Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #4

Due on Friday, 12 February.

Do all of the following problems, which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **3.9.** [Problem 3.9] Appealing to previous deductions and the Deduction Theorem if you wish, show that:
 - $\begin{array}{ll} (1) & \{\delta, \neg \delta\} \vdash \gamma & [1] \\ (2) & \vdash \varphi \rightarrow \neg \neg \varphi & [4] \end{array}$
- NOTE. You may assume any and all the examples, problems, and results of Chapter 3, up to 3.8 inclusive, when doing 3.9 (1) & (2).
 - **4.3.** [Proposition 4.3] Suppose Δ is an inconsistent set of formulas. Then $\Delta \vdash \psi$ for any formula ψ . [2]
 - **4.4.** [Proposition 4.4] Suppose Σ is an inconsistent set of formulas. Then there is a finite subset Δ of Σ such that Δ is inconsistent. [2]
 - **4.5.** [Corollary 4.5] A set of formulas Γ is consistent if and only if every finite subset of Γ is consistent. [2]
 - **4.8.** [Proposition 4.8] Suppose Σ is a maximally consistent set of formulas and φ is a formula. Then $\neg \varphi \in \Sigma$ if and only if $\varphi \notin \Sigma$. [2]
 - **4.9.** [Proposition 4.9] Suppose Σ is a maximally consistent set of formulas and φ and ψ are formulas. Then $\varphi \to \psi \in \Sigma$ if and only if $\varphi \notin \Sigma$ or $\psi \in \Sigma$. [2]

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.