Mathematics-Computer Science 4215H – Mathematical Logic

TRENT UNIVERSITY, Winter 2021

Assignment #3

Due on Friday, 5 February.

Do all of the following problems, which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **3.1.** [Proposition 3.1] Every axiom of \mathcal{L}_P is a tautology. [3]
- **3.2.** [Proposition 3.2] Suppose φ and ψ are formulas. Then $\{\varphi, (\varphi \to \psi)\} \vdash \psi$. [1]
- **3.4.** [Proposition 3.4] If $\varphi_1\varphi_2...\varphi_n$ is a deduction of \mathcal{L}_P , then $\varphi_1...\varphi_\ell$ is also a deduction of \mathcal{L}_P for any ℓ such that $1 \leq \ell \leq n$. [1]
- **3.7.** [Proposition 3.7] If $\Gamma \vdash \Delta$ and $\Delta \vdash \sigma$, then $\Gamma \vdash \sigma$. [3]
- **3.8.** [Theorem 3.8 Deduction Theorem] If Σ is any set of formulas and α and β are any formulas, then $\Sigma \vdash \alpha \rightarrow \beta$ if and only if $\Sigma \cup \{\alpha\} \vdash \beta$. [5]
- **3.9**(3). [Proposition 3.9(3)] Appealing to previous deductions and the Deduction Theorem if you wish, show that $\vdash (\neg \beta \rightarrow \neg \alpha) \rightarrow (\alpha \rightarrow \beta)$. [2]
- NOTE. You may assume any and all the examples, problems, and results of Chapter 3, up to 3.9(2) inclusive, when doing 3.9(3).

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.