Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #2

Due on Friday, 29 January.

Do all of the following problems, which are straight out of Chapter 1 of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **2.1.** [Problem 2.1] Suppose v is a truth assignment such that $v(A_0) = v(A_2) = T$ and $v(A_1) = v(A_3) = F$. Find $v(\alpha)$ if α is:
 - $(1) \neg A_2 \rightarrow \neg A_3$ $(3) \neg (\neg A_0 \rightarrow A_1)$

(5) $A_0 \wedge A_1$

- $[1.5 = 3 \times 0.5 \ each]$
- **2.2.** [Proposition 2.2] Suppose δ is any formula and u and v are truth assignments such that $u(A_n) = v(A_n)$ for all atomic formulas A_n which occur in δ . Show that $u(\delta) = v(\delta)$. [4.5]
- **2.3.** [Corollary 2.3] Suppose u and v are truth assignments such that $u(A_n) = v(A_n)$ for every atomic formula A_n . Show that u = v, *i.e.* $u(\varphi) = v(\varphi)$ for every formula φ . [1]
- **2.7.** [Proposition 2.7] Show that if Γ and Σ are sets of formulas such that $\Gamma \subseteq \Sigma$, then $\Sigma \models \Gamma$. [1]
- **2.8.** [Problem 2.8] How can one check whether or not $\Sigma \models \varphi$ for a formula φ and a finite set of formulas Σ ? [3]
- **2.10.** [Proposition 2.10] Show that a set of formulas Σ is satisfiable if and only if there is no contradiction χ such that $\Sigma \models \chi$. [4]

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.