Mathematics-Computer Science 4215H – Mathematical Logic TRENT UNIVERSITY, Winter 2021

Assignment #11

Due on Friday, 9 April.

Do all of the following problems, all of which are straight out of the textbook⁰ (which explains the numbering), reproduced here for your convenience.

- **8.11.** [Proposition 8.11] Suppose Γ and Σ are sets of sentences of \mathcal{L} , $\Gamma \subseteq \Sigma$, and C is a set of witnesses for Γ in \mathcal{L} . Then C is a set of witnesses for Σ in \mathcal{L} . [2]
- 8.12. [Lemma 8.12] Suppose Σ is a set of sentences, φ is any formula, and x is any variable. Then $\Sigma \vdash \varphi$ if and only if $\Sigma \vdash \forall x \varphi$. [3]
- 8.13. [Theorem 8.13] Suppose Γ is a consistent set of sentences of \mathcal{L} . Let C be an infinite countable set of constant symbols which are *not* symbols of \mathcal{L} , and let $\mathcal{L}' = \mathcal{L} \cup C$ be the language obtained by adding the constant symbols in C to the symbols of \mathcal{L} . Then there is a maximally consistent set Σ of sentences of \mathcal{L}' such that $\Gamma \subseteq \Sigma$ and C is a set of witnesses for Σ . [5]
- 8.16. [Theorem 8.16] A set of sentences Σ in \mathcal{L} is consistent if and only if it is satisfiable. [3]
- 8.17 [Theorem 8.17] (Completeness Theorem) If α is a sentence and Δ is a set of sentences such that $\Delta \vDash \alpha$, then $\Delta \succ \alpha$. [2]

|Total = 15|

⁰ A Problem Course in Mathematical Logic, Version 1.6.