
A Problem Course

in

Mathematical Logic

Version 1.6

Stefan Bilaniuk

Department of Mathematics

Trent University

Peterborough, Ontario

Canada K9J 7B8

E-mail address : sbilaniuk@trentu.ca

1991 Mathematics Subject Classification. 03

Key words and phrases. logic, computability, incompleteness

Abstract. This is a text for a problem-oriented course on math-
ematical logic and computability.

Copyright c© 1994-2003 Stefan Bilaniuk.
Permission is granted to copy, distribute and/or modify this doc-
ument under the terms of the GNU Free Documentation License,
Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and
no Back-Cover Texts. A copy of the license is included in the sec-
tion entitled “GNU Free Documentation License”.

This work was typeset with LATEX, using the AMS-LATEX and
AMSFonts packages of the American Mathematical Society.

Contents

Preface v

Introduction ix

Part I. Propositional Logic 1

Chapter 1. Language 3

Chapter 2. Truth Assignments 7

Chapter 3. Deductions 11

Chapter 4. Soundness and Completeness 15

Hints for Chapters 1–4 17

Part II. First-Order Logic 21

Chapter 5. Languages 23

Chapter 6. Structures and Models 33

Chapter 7. Deductions 41

Chapter 8. Soundness and Completeness 47

Chapter 9. Applications of Compactness 53

Hints for Chapters 5–9 59

Part III. Computability 65

Chapter 10. Turing Machines 67

Chapter 11. Variations and Simulations 75

Chapter 12. Computable and Non-Computable Functions 81

Chapter 13. Recursive Functions 87

Chapter 14. Characterizing Computability 95

iii

iv CONTENTS

Hints for Chapters 10–14 101

Part IV. Incompleteness 109

Chapter 15. Preliminaries 111

Chapter 16. Coding First-Order Logic 113

Chapter 17. Defining Recursive Functions In Arithmetic 117

Chapter 18. The Incompleteness Theorem 123

Hints for Chapters 15–18 127

Appendices 131

Appendix A. A Little Set Theory 133

Appendix B. The Greek Alphabet 135

Appendix C. Logic Limericks 137

Appendix D. GNU Free Documentation License 139

Appendix. Bibliography 147

Appendix. Index 149

Preface

This book is a free text intended to be the basis for a problem-
oriented course(s) in mathematical logic and computability for students
with some degree of mathematical sophistication. Parts I and II cover
the basics of propositional and first-order logic respectively, Part III
covers the basics of computability using Turing machines and recursive
functions, and Part IV covers Gödel’s Incompleteness Theorems. They
can be used in various ways for courses of various lengths and mixes of
material. The author typically uses Parts I and II for a one-term course
on mathematical logic, Part III for a one-term course on computability,
and/or much of Part III together with Part IV for a one-term course
on computability and incompleteness.

In keeping with the modified Moore-method, this book supplies
definitions, problems, and statements of results, along with some ex-
planations, examples, and hints. The intent is for the students, indi-
vidually or in groups, to learn the material by solving the problems
and proving the results for themselves. Besides constructive criticism,
it will probably be necessary for the instructor to supply further hints
or direct the students to other sources from time to time. Just how
this text is used will, of course, depend on the instructor and students
in question. However, it is probably not appropriate for a conventional
lecture-based course nor for a really large class.

The material presented in this text is somewhat stripped-down.
Various concepts and topics that are often covered in introductory
mathematical logic and computability courses are given very short
shrift or omitted entirely.1 Instructors might consider having students
do projects on additional material if they wish to to cover it.

Prerequisites. The material in this text is largely self-contained,
though some knowledge of (very basic) set theory and elementary num-
ber theory is assumed at several points. A few problems and examples
draw on concepts from other parts of mathematics; students who are

1Future versions of both volumes may include more – or less! – material. Feel
free to send suggestions, corrections, criticisms, and the like — I’ll feel free to ignore
them or use them.

v

vi PREFACE

not already familiar with these should consult texts in the appropri-
ate subjects for the necessary definitions. What is really needed to
get anywhere with all of the material developed here is competence in
handling abstraction and proofs, including proofs by induction. The
experience provided by a rigorous introductory course in abstract al-
gebra, analysis, or discrete mathematics ought to be sufficient.

Chapter Dependencies. The following diagram indicates how
the parts and chapters depend on one another, with the exception
of a few isolated problems or subsections.

1 10

2 3 11 12

4 13

5 14

6 7 15

8 16 17

9 18

I

II

III

IV

������

HHHHHj

������

HHHHHj

HHHHHj

������

?

������

?

������

HHHHHj ?
-

HHHHHj

������

������

HHHHHj

?

HHHHHj

������

Acknowledgements. Various people and institutions deserve some
credit for this text.

Foremost are all the people who developed the subject, even though
almost no attempt has been made to give due credit to those who
developed and refined the ideas, results, and proofs mentioned in this
work. In mitigation, it would often be difficult to assign credit fairly
because many people were involved, frequently having interacted in
complicated ways. Those interested in who did what should start by
consulting other texts or reference works covering similar material. In

PREFACE vii

particular, a number of the key papers in the development of modern
mathematical logic can be found in [9] and [6].

Others who should be acknowledged include my teachers and col-
leagues; my students at Trent University who suffered, suffer, and will
suffer through assorted versions of this text; Trent University and the
taxpayers of Ontario, who paid my salary; Ohio University, where I
spent my sabbatical in 1995–96; all the people and organizations who
developed the software and hardware with which this book was pre-
pared. Gregory H. Moore, whose mathematical logic course convinced
me that I wanted to do the stuff, deserves particular mention.

Any blame properly accrues to the author.

Availability. The URL of the home page for A Problem Course
In Mathematical Logic, with links to LATEX, PostScript, and Portable
Document Format (pdf) files of the latest available release is:

http://euclid.trentu.ca/math/sb/pcml/

Please note that to typeset the LATEX source files, you will need the
AMS-LATEX and AMSFonts packages in addition to LATEX.

If you have any problems, feel free to contact the author for assis-
tance, preferably by e-mail:

Stefan Bilaniuk
Department of Mathematics
Trent University
Peterborough, Ontario
K9J 7B8
e-mail : sbilaniuk@trentu.ca

Conditions. See the GNU Free Documentation License in Appen-
dix D for what you can do with this text. The gist is that you are free
to copy, distribute, and use it unchanged, but there are some restric-
tions on what you can do if you wish to make changes. If you wish to
use this text in a manner not covered by the GNU Free Documentation
License, please contact the author.

Author’s Opinion. It’s not great, but the price is right!

Introduction

What sets mathematics aside from other disciplines is its reliance on
proof as the principal technique for determining truth, where science,
for example, relies on (carefully analyzed) experience. So what is a
proof? Practically speaking, a proof is any reasoned argument accepted
as such by other mathematicians.2 A more precise definition is needed,
however, if one wishes to discover what mathematical reasoning can
– or cannot – accomplish in principle. This is one of the reasons for
studying mathematical logic, which is also pursued for its own sake
and in order to find new tools to use in the rest of mathematics and in
related fields.

In any case, mathematical logic is concerned with formalizing and
analyzing the kinds of reasoning used in the rest of mathematics. The
point of mathematical logic is not to try to do mathematics per se
completely formally — the practical problems involved in doing so are
usually such as to make this an exercise in frustration — but to study
formal logical systems as mathematical objects in their own right in
order to (informally!) prove things about them. For this reason, the
formal systems developed in this part and the next are optimized to
be easy to prove things about, rather than to be easy to use. Natural
deductive systems such as those developed by philosophers to formalize
logical reasoning are equally capable in principle and much easier to
actually use, but harder to prove things about.

Part of the problem with formalizing mathematical reasoning is the
necessity of precisely specifying the language(s) in which it is to be
done. The natural languages spoken by humans won’t do: they are
so complex and continually changing as to be impossible to pin down
completely. By contrast, the languages which underly formal logical
systems are, like programming languages, rigidly defined but much sim-
pler and less flexible than natural languages. A formal logical system
also requires the careful specification of the allowable rules of reasoning,

2If you are not a mathematician, gentle reader, you are hereby temporarily
promoted.

ix

x INTRODUCTION

plus some notion of how to interpret statements in the underlying lan-
guage and determine their truth. The real fun lies in the relationship
between interpretation of statements, truth, and reasoning.

The de facto standard for formalizing mathematical systems is first-
order logic, and the main thrust of this text is studying it with a
view to understanding some of its basic features and limitations. More
specifically, Part I of this text is concerned with propositional logic,
developed here as a warm-up for the development of first-order logic
proper in Part II.

Propositional logic attempts to make precise the relationships that
certain connectives like not , and , or , and if . . . then are used to ex-
press in English. While it has uses, propositional logic is not powerful
enough to formalize most mathematical discourse. For one thing, it
cannot handle the concepts expressed by the quantifiers all and there
is . First-order logic adds these notions to those propositional logic
handles, and suffices, in principle, to formalize most mathematical rea-
soning. The greater flexibility and power of first-order logic makes it a
good deal more complicated to work with, both in syntax and seman-
tics. However, a number of results about propositional logic carry over
to first-order logic with little change.

Given that first-order logic can be used to formalize most mathe-
matical reasoning it provides a natural context in which to ask whether
such reasoning can be automated. This question is the Entschei-
dungsproblem3:

Entscheidungsproblem. Given a set Σ of hypotheses and some
statement ϕ, is there an effective method for determining whether or
not the hypotheses in Σ suffice to prove ϕ?

Historically, this question arose out of David Hilbert’s scheme to
secure the foundations of mathematics by axiomatizing mathematics
in first-order logic, showing that the axioms in question do not give
rise to any contradictions, and that they suffice to prove or disprove
every statement (which is where the Entscheidungsproblem comes in).
If the answer to the Entscheidungsproblem were “yes” in general, the
effective method(s) in question might put mathematicians out of busi-
ness. . . Of course, the statement of the problem begs the question of
what “effective method” is supposed to mean.

In the course of trying to find a suitable formalization of the no-
tion of “effective method”, mathematicians developed several different

3Entscheidungsproblem ≡ decision problem.

INTRODUCTION xi

abstract models of computation in the 1930’s, including recursive func-
tions, λ-calculus, Turing machines, and grammars4. Although these
models are very different from each other in spirit and formal defini-
tion, it turned out that they were all essentially equivalent in what they
could do. This suggested the (empirical, not mathematical!) principle:

Church’s Thesis. A function is effectively computable in princi-
ple in the real world if and only if it is computable by (any) one of the
abstract models mentioned above.

Part III explores two of the standard formalizations of the notion of
“effective method”, namely Turing machines and recursive functions,
showing, among other things, that these two formalizations are actually
equivalent. Part IV then uses the tools developed in Parts II ands III
to answer the Entscheidungsproblem for first-order logic. The answer
to the general problem is negative, by the way, though decision proce-
dures do exist for propositional logic, and for some particular first-order
languages and sets of hypotheses in these languages.

Prerequisites. In principle, not much is needed by way of prior
mathematical knowledge to define and prove the basic facts about
propositional logic and computability. Some knowledge of the natu-
ral numbers and a little set theory suffices; the former will be assumed
and the latter is very briefly summarized in Appendix A. ([10] is a
good introduction to basic set theory in a style not unlike this book’s;
[8] is a good one in a more conventional mode.) Competence in han-
dling abstraction and proofs, especially proofs by induction, will be
needed, however. In principle, the experience provided by a rigorous
introductory course in algebra, analysis, or discrete mathematics ought
to be sufficient.

Other Sources and Further Reading. [2], [5], [7], [12], and [13]
are texts which go over large parts of the material covered here (and
often much more besides), while [1] and [4] are good references for more
advanced material. A number of the key papers in the development of
modern mathematical logic and related topics can be found in [9] and
[6]. Entertaining accounts of some related topics may be found in [11],

4The development of the theory of computation thus actually began before the
development of electronic digital computers. In fact, the computers and program-
ming languages we use today owe much to the abstract models of computation
which preceded them. For example, the standard von Neumann architecture for
digital computers was inspired by Turing machines and the programming language
LISP borrows much of its structure from λ-calculus.

xii INTRODUCTION

[14] and[15]. Those interested in natural deductive systems might try
[3], which has a very clean presentation.

Part I

Propositional Logic

CHAPTER 1

Language

Propositional logic (sometimes called sentential or predicate logic)
attempts to formalize the reasoning that can be done with connectives
like not , and , or , and if . . . then. We will define the formal language
of propositional logic, LP , by specifying its symbols and rules for as-
sembling these symbols into the formulas of the language.

Definition 1.1. The symbols of LP are:

(1) Parentheses: (and).
(2) Connectives: ¬ and →.
(3) Atomic formulas: A0, A1, A2, . . . , An, . . .

We still need to specify the ways in which the symbols of LP can
be put together.

Definition 1.2. The formulas of LP are those finite sequences or
strings of the symbols given in Definition 1.1 which satisfy the following
rules:

(1) Every atomic formula is a formula.
(2) If α is a formula, then (¬α) is a formula.
(3) If α and β are formulas, then (α→ β) is a formula.
(4) No other sequence of symbols is a formula.

We will often use lower-case Greek characters to represent formulas,
as we did in the definition above, and upper-case Greek characters
to represent sets of formulas.1 All formulas in Chapters 1–4 will be
assumed to be formulas of LP unless stated otherwise.

What do these definitions mean? The parentheses are just punc-
tuation: their only purpose is to group other symbols together. (One
could get by without them; see Problem 1.6.) ¬ and→ are supposed to
represent the connectives not and if . . . then respectively. The atomic
formulas, A0, A1, . . . , are meant to represent statements that cannot
be broken down any further using our connectives, such as “The moon
is made of cheese.” Thus, one might translate the the English sen-
tence “If the moon is red, it is not made of cheese” into the formula

1The Greek alphabet is given in Appendix B.

3

4 1. LANGUAGE

(A0 → (¬A1)) of LP by using A0 to represent “The moon is red” and
A1 to represent “The moon is made of cheese.” Note that the truth
of the formula depends on the interpretation of the atomic sentences
which appear in it. Using the interpretations just given of A0 and A1,
the formula (A0 → (¬A1)) is true, but if we instead use A0 and A1

to interpret “My telephone is ringing” and “Someone is calling me”,
respectively, (A0 → (¬A1)) is false.

Definition 1.2 says that that every atomic formula is a formula and
every other formula is built from shorter formulas using the connectives
and parentheses in particular ways. For example, A1123, (A2 → (¬A0)),
and (((¬A1) → (A1 → A7)) → A7) are all formulas, but X3, (A5),
()¬A41, A5 → A7, and (A2 → (¬A0) are not.

Problem 1.1. Why are the following not formulas of LP ? There
might be more than one reason. . .

(1) A−56

(2) (Y → A)
(3) (A7 ← A4)
(4) A7 → (¬A5))
(5) (A8A9 → A1043998

(6) (((¬A1)→ (A` → A7)→ A7)

Problem 1.2. Show that every formula of LP has the same number
of left parentheses as it has of right parentheses.

Problem 1.3. Suppose α is any formula of LP . Let `(α) be the
length of α as a sequence of symbols and let p(α) be the number of
parentheses (counting both left and right parentheses) in α. What are
the minimum and maximum values of p(α)/`(α)?

Problem 1.4. Suppose α is any formula of LP . Let s(α) be the
number of atomic formulas in α (counting repetitions) and let c(α) be
the number of occurrences of → in α. Show that s(α) = c(α) + 1.

Problem 1.5. What are the possible lengths of formulas of LP?
Prove it.

Problem 1.6. Find a way for doing without parentheses or other
punctuation symbols in defining a formal language for propositional
logic.

Proposition 1.7. Show that the set of formulas of LP is countable.

Informal Conventions. At first glance, LP may not seem capable
of breaking down English sentences with connectives other than not
and if . . . then. However, the sense of many other connectives can be

1. LANGUAGE 5

captured by these two by using suitable circumlocutions. We will use
the symbols ∧, ∨, and ↔ to represent and , or ,2 and if and only if
respectively. Since they are not among the symbols of LP , we will use
them as abbreviations for certain constructions involving only ¬ and
→. Namely,

• (α ∧ β) is short for (¬(α→ (¬β))),
• (α ∨ β) is short for ((¬α)→ β), and
• (α↔ β) is short for ((α→ β) ∧ (β → α)).

Interpreting A0 and A1 as before, for example, one could translate the
English sentence “The moon is red and made of cheese” as (A0 ∧A1).
(Of course this is really (¬(A0 → (¬A1))), i.e. “It is not the case that
if the moon is green, it is not made of cheese.”) ∧, ∨, and ↔ were not
included among the official symbols of LP partly because we can get
by without them and partly because leaving them out makes it easier
to prove things about LP .

Problem 1.8. Take a couple of English sentences with several con-
nectives and translate them into formulas of LP . You may use ∧, ∨,
and ↔ if appropriate.

Problem 1.9. Write out ((α∨β)∧ (β → α)) using only ¬ and →.

For the sake of readability, we will occasionally use some informal
conventions that let us get away with writing fewer parentheses:

• We will usually drop the outermost parentheses in a formula,
writing α→ β instead of (α→ β) and ¬α instead of (¬α).
• We will let ¬ take precedence over → when parentheses are

missing, so ¬α → β is short for ((¬α) → β), and fit the
informal connectives into this scheme by letting the order of
precedence be ¬, ∧, ∨, →, and ↔.
• Finally, we will group repetitions of →, ∨, ∧, or ↔ to the

right when parentheses are missing, so α→ β → γ is short for
(α→ (β → γ)).

Just like formulas using ∨, ∧, or ¬, formulas in which parentheses have
been omitted as above are not official formulas of LP , they are conve-
nient abbreviations for official formulas of LP . Note that a precedent
for the precedence convention can be found in the way that · commonly
takes precedence over + in writing arithmetic formulas.

Problem 1.10. Write out ¬(α↔ ¬δ)∧β → ¬α→ γ first with the
missing parentheses included and then as an official formula of LP .

2We will use or inclusively, so that “A or B” is still true if both of A and B
are true.

6 1. LANGUAGE

The following notion will be needed later on.

Definition 1.3. Suppose ϕ is a formula of LP . The set of subfor-
mulas of ϕ, S(ϕ), is defined as follows.

(1) If ϕ is an atomic formula, then S(ϕ) = {ϕ}.
(2) If ϕ is (¬α), then S(ϕ) = S(α) ∪ {(¬α)}.
(3) If ϕ is (α→ β), then S(ϕ) = S(α) ∪ S(β) ∪ {(α→ β)}.

For example, if ϕ is (((¬A1) → A7) → (A8 → A1)), then S(ϕ)
includes A1, A7, A8, (¬A1), (A8 → A1), ((¬A1)→ A7), and (((¬A1)→
A7)→ (A8 → A1)) itself.

Note that if you write out a formula with all the official parenthe-
ses, then the subformulas are just the parts of the formula enclosed by
matching parentheses, plus the atomic formulas. In particular, every
formula is a subformula of itself. Note that some subformulas of for-
mulas involving our informal abbreviations ∨, ∧, or ↔ will be most
conveniently written using these abbreviations. For example, if ψ is
A4 → A1 ∨A4, then

S(ψ) = {A1, A4, (¬A1), (A1 ∨ A4), (A4 → (A1 ∨A4)) } .
(As an exercise, where did (¬A1) come from?)

Problem 1.11. Find all the subformulas of each of the following
formulas.

(1) (¬((¬A56)→ A56))
(2) A9 → A8 → ¬(A78→ ¬¬A0)
(3) ¬A0 ∧ ¬A1 ↔ ¬(A0 ∨ A1)

Unique Readability. The slightly paranoid — er, truly rigorous
— might ask whether Definitions 1.1 and 1.2 actually ensure that the
formulas of LP are unambiguous, i.e. can be read in only one way
according to the rules given in Definition 1.2. To actually prove this
one must add to Definition 1.1 the requirement that all the symbols
of LP are distinct and that no symbol is a subsequence of any other
symbol. With this addition, one can prove the following:

Theorem 1.12 (Unique Readability Theorem). A formula of LP
must satisfy exactly one of conditions 1–3 in Definition 1.2.

CHAPTER 2

Truth Assignments

Whether a given formula ϕ of LP is true or false usually depends on
how we interpret the atomic formulas which appear in ϕ. For example,
if ϕ is the atomic formulaA2 and we interpret it as “2+2 = 4”, it is true,
but if we interpret it as “The moon is made of cheese”, it is false. Since
we don’t want to commit ourselves to a single interpretation — after
all, we’re really interested in general logical relationships — we will
define how any assignment of truth values T (“true”) and F (“false”)
to atomic formulas of LP can be extended to all other formulas. We
will also get a reasonable definition of what it means for a formula of
LP to follow logically from other formulas.

Definition 2.1. A truth assignment is a function v whose domain
is the set of all formulas of LP and whose range is the set {T, F} of
truth values, such that:

(1) v(An) is defined for every atomic formula An.
(2) For any formula α,

v((¬α)) =

{
T if v(α) = F

F if v(α) = T .

(3) For any formulas α and β,

v((α→ β)) =

{
F if v(α) = T and v(β) = F

T otherwise.

Given interpretations of all the atomic formulas of LP , the corre-
sponding truth assignment would give each atomic formula representing
a true statement the value T and every atomic formula representing a
false statement the value F . Note that we have not defined how to
handle any truth values besides T and F in LP . Logics with other
truth values have uses, but are not relevant in most of mathematics.

For an example of how non-atomic formulas are given truth values
on the basis of the truth values given to their components, suppose
v is a truth assignment such that v(A0) = T and v(A1) = F . Then
v(((¬A1)→ (A0 → A1))) is determined from v((¬A1)) and v((A0→

7

8 2. TRUTH ASSIGNMENTS

A1)) according to clause 3 of Definition 2.1. In turn, v((¬A1)) is deter-
mined from of v(A1) according to clause 2 and v((A0 → A1)) is deter-
mined from v(A1) and v(A0) according to clause 3. Finally, by clause 1,
our truth assignment must be defined for all atomic formulas to begin
with; in this case, v(A0) = T and v(A1) = F . Thus v((¬A1)) = T and
v((A0 → A1)) = F , so v(((¬A1)→ (A0 → A1))) = F .

A convenient way to write out the determination of the truth value
of a formula on a given truth assignment is to use a truth table: list all
the subformulas of the given formula across the top in order of length
and then fill in their truth values on the bottom from left to right.
Except for the atomic formulas at the extreme left, the truth value of
each subformula will depend on the truth values of the subformulas to
its left. For the example above, one gets something like:

A0 A1 (¬A1) (A0 → A1) (¬A1)→ (A0 → A1))
T F T F F

Problem 2.1. Suppose v is a truth assignment such that v(A0) =
v(A2) = T and v(A1) = v(A3) = F . Find v(α) if α is:

(1) ¬A2 → ¬A3

(2) ¬A2 → A3

(3) ¬(¬A0 → A1)
(4) A0 ∨ A1

(5) A0 ∧ A1

The use of finite truth tables to determine what truth value a par-
ticular truth assignment gives a particular formula is justified by the
following proposition, which asserts that only the truth values of the
atomic sentences in the formula matter.

Proposition 2.2. Suppose δ is any formula and u and v are truth
assignments such that u(An) = v(An) for all atomic formulas An which
occur in δ. Then u(δ) = v(δ).

Corollary 2.3. Suppose u and v are truth assignments such that
u(An) = v(An) for every atomic formula An. Then u = v, i.e. u(ϕ) =
v(ϕ) for every formula ϕ.

Proposition 2.4. If α and β are formulas and v is a truth assign-
ment, then:

(1) v(¬α) = T if and only if v(α) = F .
(2) v(α→ β) = T if and only if v(β) = T whenever v(α) = T ;
(3) v(α ∧ β) = T if and only if v(α) = T and v(β) = T ;
(4) v(α ∨ β) = T if and only if v(α) = T or v(β) = T ; and
(5) v(α↔ β) = T if and only if v(α) = v(β).

2. TRUTH ASSIGNMENTS 9

Truth tables are often used even when the formula in question is
not broken down all the way into atomic formulas. For example, if α
and β are any formulas and we know that α is true but β is false, then
the truth of (α → (¬β)) can be determined by means of the following
table:

α β (¬β) (α→ (¬β))
T F T T

Definition 2.2. If v is a truth assignment and ϕ is a formula, we
will often say that v satisfies ϕ if v(ϕ) = T . Similarly, if Σ is a set
of formulas, we will often say that v satisfies Σ if v(σ) = T for every
σ ∈ Σ. We will say that ϕ (respectively, Σ) is satisfiable if there is
some truth assignment which satisfies it.

Definition 2.3. A formula ϕ is a tautology if it is satisfied by every
truth assignment. A formula ψ is a contradiction if there is no truth
assignment which satisfies it.

For example, (A4 → A4) is a tautology while (¬(A4 → A4)) is a
contradiction, and A4 is a formula which is neither. One can check
whether a given formula is a tautology, contradiction, or neither, by
grinding out a complete truth table for it, with a separate line for each
possible assignment of truth values to the atomic subformulas of the
formula. For A3 → (A4 → A3) this gives

A3 A4 A4 → A3 A3 → (A4 → A3)
T T T T
T F T T
F T F T
F F T T

so A3 → (A4 → A3) is a tautology. Note that, by Proposition 2.2, we
need only consider the possible truth values of the atomic sentences
which actually occur in a given formula.

One can often use truth tables to determine whether a given formula
is a tautology or a contradiction even when it is not broken down all
the way into atomic formulas. For example, if α is any formula, then
the table

α (α → α) (¬(α→ α))
T T F
F T F

demonstrates that (¬(α → α)) is a contradiction, no matter which
formula of LP α actually is.

Proposition 2.5. If α is any formula, then ((¬α) ∨ α) is a tau-
tology and ((¬α) ∧ α) is a contradiction.

10 2. TRUTH ASSIGNMENTS

Proposition 2.6. A formula β is a tautology if and only if ¬β is
a contradiction.

After all this warmup, we are finally in a position to define what it
means for one formula to follow logically from other formulas.

Definition 2.4. A set of formulas Σ implies a formula ϕ, written
as Σ |= ϕ, if every truth assignment v which satisfies Σ also satisfies ϕ.
We will often write Σ 2 ϕ if it is not the case that Σ |= ϕ. In the case
where Σ is empty, we will usually write |= ϕ instead of ∅ |= ϕ.

Similarly, if ∆ and Γ are sets of formulas, then ∆ implies Γ, written
as ∆ |= Γ, if every truth assignment v which satisfies ∆ also satisfies
Γ.

For example, {A3, (A3 → ¬A7) } |= ¬A7, but {A8, (A5 → A8) } 2
A5. (There is a truth assignment which makes A8 and A5 → A8 true,
but A5 false.) Note that a formula ϕ is a tautology if and only if |= ϕ,
and a contradiction if and only if |= (¬ϕ).

Proposition 2.7. If Γ and Σ are sets of formulas such that Γ ⊆ Σ,
then Σ |= Γ.

Problem 2.8. How can one check whether or not Σ |= ϕ for a
formula ϕ and a finite set of formulas Σ?

Proposition 2.9. Suppose Σ is a set of formulas and ψ and ρ are
formulas. Then Σ ∪ {ψ} |= ρ if and only if Σ |= ψ → ρ.

Proposition 2.10. A set of formulas Σ is satisfiable if and only if
there is no contradiction χ such that Σ |= χ.

CHAPTER 3

Deductions

In this chapter we develop a way of defining logical implication
that does not rely on any notion of truth, but only on manipulating
sequences of formulas, namely formal proofs or deductions. (Of course,
any way of defining logical implication had better be compatible with
that given in Chapter 2.) To define these, we first specify a suitable
set of formulas which we can use freely as premisses in deductions.

Definition 3.1. The three axiom schema of LP are:

A1: (α→ (β → α))
A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))
A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β)).

Replacing α, β, and γ by particular formulas of LP in any one of the
schemas A1, A2, or A3 gives an axiom of LP .

For example, (A1 → (A4 → A1)) is an axiom, being an instance of
axiom schema A1, but (A9 → (¬A0)) is not an axiom as it is not the
instance of any of the schema. As had better be the case, every axiom
is always true:

Proposition 3.1. Every axiom of LP is a tautology.

Second, we specify our one (and only!) rule of inference.1

Definition 3.2 (Modus Ponens). Given the formulas ϕ and (ϕ→
ψ), one may infer ψ.

We will usually refer to Modus Ponens by its initials, MP. Like any
rule of inference worth its salt, MP preserves truth.

Proposition 3.2. Suppose ϕ and ψ are formulas. Then {ϕ, (ϕ→
ψ) } |= ψ.

With axioms and a rule of inference in hand, we can execute formal
proofs in LP .

1Natural deductive systems, which are usually more convenient to actually
execute deductions in than the system being developed here, compensate for having
few or no axioms by having many rules of inference.

11

12 3. DEDUCTIONS

Definition 3.3. Let Σ be a set of formulas. A deduction or proof
from Σ in LP is a finite sequence ϕ1ϕ2 . . . ϕn of formulas such that for
each k ≤ n,

(1) ϕk is an axiom, or
(2) ϕk ∈ Σ, or
(3) there are i, j < k such that ϕk follows from ϕi and ϕj by MP.

A formula of Σ appearing in the deduction is called a premiss . Σ proves
a formula α, written as Σ ` α, if α is the last formula of a deduction
from Σ. We’ll usually write ` α for ∅ ` α, and take Σ ` ∆ to mean
that Σ ` δ for every formula δ ∈ ∆.

In order to make it easier to verify that an alleged deduction really
is one, we will number the formulas in a deduction, write them out in
order on separate lines, and give a justification for each formula. Like
the additional connectives and conventions for dropping parentheses in
Chapter 1, this is not officially a part of the definition of a deduction.

Example 3.1. Let us show that ` ϕ→ ϕ.

(1) (ϕ→ ((ϕ→ ϕ)→ ϕ))→ ((ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ)) A2
(2) ϕ→ ((ϕ→ ϕ)→ ϕ) A1
(3) (ϕ→ (ϕ→ ϕ))→ (ϕ→ ϕ) 1,2 MP
(4) ϕ→ (ϕ→ ϕ) A1
(5) ϕ→ ϕ 3,4 MP

Hence ` ϕ→ ϕ, as desired. Note that indication of the formulas from
which formulas 3 and 5 beside the mentions of MP.

Example 3.2. Let us show that {α → β, β → γ } ` α→ γ.

(1) (β → γ)→ (α→ (β → γ)) A1
(2) β → γ Premiss
(3) α→ (β → γ) 1,2 MP
(4) (α→ (β → γ))→ ((α→ β)→ (α → γ)) A2
(5) (α→ β)→ (α→ γ) 4,3 MP
(6) α→ β Premiss
(7) α→ γ 5,6 MP

Hence {α→ β, β → γ } ` α → γ, as desired.

It is frequently convenient to save time and effort by simply referring
to a deduction one has already done instead of writing it again as part
of another deduction. If you do so, please make sure you appeal only
to deductions that have already been carried out.

Example 3.3. Let us show that ` (¬α → α)→ α.

(1) (¬α→ ¬α)→ ((¬α→ α)→ α) A3

3. DEDUCTIONS 13

(2) ¬α→ ¬α Example 3.1
(3) (¬α→ α)→ α 1,2 MP

Hence ` (¬α → α) → α, as desired. To be completely formal, one
would have to insert the deduction given in Example 3.1 (with ϕ re-
placed by ¬α throughout) in place of line 2 above and renumber the
old line 3.

Problem 3.3. Show that if α, β, and γ are formulas, then

(1) {α→ (β → γ), β } ` α→ γ
(2) ` α ∨ ¬α

Example 3.4. Let us show that ` ¬¬β → β.

(1) (¬β → ¬¬β)→ ((¬β → ¬β)→ β) A3
(2) ¬¬β → (¬β → ¬¬β) A1
(3) ¬¬β → ((¬β → ¬β)→ β) 1,2 Example 3.2
(4) ¬β → ¬β Example 3.1
(5) ¬¬β → β 3,4 Problem 3.3.1

Hence ` ¬¬β → β, as desired.

Certain general facts are sometimes handy:

Proposition 3.4. If ϕ1ϕ2 . . . ϕn is a deduction of LP , then ϕ1 . . . ϕ`
is also a deduction of LP for any ` such that 1 ≤ ` ≤ n.

Proposition 3.5. If Γ ` δ and Γ ` δ → β, then Γ ` β.

Proposition 3.6. If Γ ⊆ ∆ and Γ ` α, then ∆ ` α.

Proposition 3.7. If Γ ` ∆ and ∆ ` σ, then Γ ` σ.

The following theorem often lets one take substantial shortcuts
when trying to show that certain deductions exist in LP , even though
it doesn’t give us the deductions explicitly.

Theorem 3.8 (Deduction Theorem). If Σ is any set of formulas
and α and β are any formulas, then Σ ` α→ β if and only if Σ∪{α} `
β.

Example 3.5. Let us show that ` ϕ → ϕ. By the Deduction
Theorem it is enough to show that {ϕ} ` ϕ, which is trivial:

(1) ϕ Premiss

Compare this to the deduction in Example 3.1.

Problem 3.9. Appealing to previous deductions and the Deduction
Theorem if you wish, show that:

(1) {δ,¬δ} ` γ

14 3. DEDUCTIONS

(2) ` ϕ→ ¬¬ϕ
(3) ` (¬β → ¬α) → (α→ β)
(4) ` (α→ β)→ (¬β → ¬α)
(5) ` (β → ¬α)→ (α→ ¬β)
(6) ` (¬β → α)→ (¬α→ β)
(7) ` σ → (σ ∨ τ)
(8) {α ∧ β} ` β
(9) {α ∧ β} ` α

CHAPTER 4

Soundness and Completeness

How are deduction and implication related, given that they were
defined in completely different ways? We have some evidence that they
behave alike; compare, for example, Proposition 2.9 and the Deduction
Theorem. It had better be the case that if there is a deduction of a
formula ϕ from a set of premisses Σ, then ϕ is implied by Σ. (Otherwise,
what’s the point of defining deductions?) It would also be nice for the
converse to hold: whenever ϕ is implied by Σ, there is a deduction of
ϕ from Σ. (So anything which is true can be proved.) The Soundness
and Completeness Theorems say that both ways do hold, so Σ ` ϕ if
and only if Σ |= ϕ, i.e. ` and |= are equivalent for propositional logic.
One direction is relatively straightforward to prove. . .

Theorem 4.1 (Soundness Theorem). If ∆ is a set of formulas and
α is a formula such that ∆ ` α, then ∆ |= α.

. . . but for the other direction we need some additional concepts.

Definition 4.1. A set of formulas Γ is inconsistent if Γ ` ¬(α →
α) for some formula α, and consistent if it is not inconsistent.

For example, {A41} is consistent by Proposition 4.2, but it follows
from Problem 3.9 that {A13,¬A13} is inconsistent.

Proposition 4.2. If a set of formulas is satisfiable, then it is con-
sistent.

Proposition 4.3. Suppose ∆ is an inconsistent set of formulas.
Then ∆ ` ψ for any formula ψ.

Proposition 4.4. Suppose Σ is an inconsistent set of formulas.
Then there is a finite subset ∆ of Σ such that ∆ is inconsistent.

Corollary 4.5. A set of formulas Γ is consistent if and only if
every finite subset of Γ is consistent.

To obtain the Completeness Theorem requires one more definition.

Definition 4.2. A set of formulas Σ is maximally consistent if Σ
is consistent but Σ ∪ {ϕ} is inconsistent for any ϕ /∈ Σ.

15

16 4. SOUNDNESS AND COMPLETENESS

That is, a set of formulas is maximally consistent if it is consistent,
but there is no way to add any other formula to it and keep it consistent.

Problem 4.6. Suppose v is a truth assignment. Show that Σ =
{ϕ | v(ϕ) = T } is maximally consistent.

We will need some facts concerning maximally consistent theories.

Proposition 4.7. If Σ is a maximally consistent set of formulas,
ϕ is a formula, and Σ ` ϕ, then ϕ ∈ Σ.

Proposition 4.8. Suppose Σ is a maximally consistent set of for-
mulas and ϕ is a formula. Then ¬ϕ ∈ Σ if and only if ϕ /∈ Σ.

Proposition 4.9. Suppose Σ is a maximally consistent set of for-
mulas and ϕ and ψ are formulas. Then ϕ → ψ ∈ Σ if and only if
ϕ /∈ Σ or ψ ∈ Σ.

It is important to know that any consistent set of formulas can be
expanded to a maximally consistent set.

Theorem 4.10. Suppose Γ is a consistent set of formulas. Then
there is a maximally consistent set of formulas Σ such that Γ ⊆ Σ.

Now for the main event!

Theorem 4.11. A set of formulas is consistent if and only if it is
satisfiable.

Theorem 4.11 gives the equivalence between ` and |= in slightly
disguised form.

Theorem 4.12 (Completeness Theorem). If ∆ is a set of formulas
and α is a formula such that ∆ |= α, then ∆ ` α.

It follows that anything provable from a given set of premisses must
be true if the premisses are, and vice versa. The fact that ` and |= are
actually equivalent can be very convenient in situations where one is
easier to use than the other. For example, most parts of Problems 3.3
and 3.9 are much easier to do with truth tables instead of deductions,
even if one makes use of the Deduction Theorem.

Finally, one more consequence of Theorem 4.11.

Theorem 4.13 (Compactness Theorem). A set of formulas Γ is
satisfiable if and only if every finite subset of Γ is satisfiable.

We will not look at any uses of the Compactness Theorem now,
but we will consider a few applications of its counterpart for first-order
logic in Chapter 9.

Hints for Chapters 1–4

Hints for Chapter 1.

1.1. Symbols not in the language, unbalanced parentheses, lack of
connectives. . .

1.2. The key idea is to exploit the recursive structure of Defini-
tion 1.2 and proceed by induction on the length of the formula or on
the number of connectives in the formula. As this is an idea that will
be needed repeatedly in Parts I, II, and IV, here is a skeleton of the
argument in this case:

Proof. By induction on n, the number of connectives (i.e. occur-
rences of ¬ and/or →) in a formula ϕ of LP , we will show that any
formula ϕ must have just as many left parentheses as right parentheses.

Base step: (n = 0) If ϕ is a formula with no connectives, then it
must be atomic. (Why?) Since an atomic formula has no parentheses
at all, it has just as many left parentheses as right parentheses.

Induction hypothesis: (n ≤ k) Assume that any formula with n ≤ k
connectives has just as many left parentheses as right parentheses.

Induction step: (n = k + 1) Suppose ϕ is a formula with n = k + 1
connectives. It follows from Definition 1.2 that ϕ must be either

(1) (¬α) for some formula α with k connectives or
(2) (β → γ) for some formulas β and γ which have≤ k connectives

each.

(Why?) We handle the two cases separately:

(1) By the induction hypothesis, α has just as many left paren-
theses as right parentheses. Since ϕ, i.e. (¬α), has one more
left parenthesis and one more right parentheses than α, it must
have just as many left parentheses as right parentheses as well.

(2) By the induction hypothesis, β and γ each have the same
number of left parentheses as right parentheses. Since ϕ, i.e.
(β → α), has one more left parenthesis and one more right
parnthesis than β and γ together have, it must have just as
many left parntheses as right parentheses as well.

17

18 HINTS FOR CHAPTERS 1–4

It follows by induction that every formula ϕ of LP has just as many
left parentheses as right parentheses.

�
1.3. Compute p(α)/`(α) for a number of examples and look for

patterns. Getting a minimum value should be pretty easy.

1.4. Proceed by induction on the length of or on the number of
connectives in the formula.

1.5. Construct examples of formulas of all the short lengths that
you can, and then see how you can make longer formulas out of short
ones.

1.6. Hewlett-Packard sells calculators that use such a trick. A sim-
ilar one is used in Definition 5.2.

1.7. Observe that LP has countably many symbols and that every
formula is a finite sequence of symbols. The relevant facts from set
theory are given in Appendix A.

1.8. Stick several simple statements together with suitable connec-
tives.

1.9. This should be straightforward.

1.10. Ditto.

1.11. To make sure you get all the subformulas, write out the for-
mula in official form with all the parentheses.

1.12. Proceed by induction on the length or number of connectives
of the formula.

Hints for Chapter 2.

2.1. Use truth tables.

2.2. Proceed by induction on the length of δ or on the number of
connectives in δ.

2.3. Use Proposition 2.2.

2.4. In each case, unwind Definition 2.1 and the definitions of the
abbreviations.

2.5. Use truth tables.

2.6. Use Definition 2.3 and Proposition 2.4.

2.7. If a truth assignment satisfies every formula in Σ and every
formula in Γ is also in Σ, then. . .

HINTS FOR CHAPTERS 1–4 19

2.8. Grinding out an appropriate truth table will do the job. Why
is it important that Σ be finite here?

2.9. Use Definition 2.4 and Proposition 2.4.

2.10. Use Definitions 2.3 and 2.4. If you have trouble trying to
prove one of the two directions directly, try proving its contrapositive
instead.

Hints for Chapter 3.

3.1. Truth tables are probably the best way to do this.

3.2. Look up Proposition 2.4.

3.3. There are usually many different deductions with a given con-
clusion, so you shouldn’t take the following hints as gospel.

(1) Use A2 and A1.
(2) Recall what ∨ abbreviates.

3.4. You need to check that ϕ1 . . . ϕ` satisfies the three conditions
of Definition 3.3; you know ϕ1 . . . ϕn does.

3.5. Put together a deduction of β from Γ from the deductions of
δ and δ → β from Γ.

3.6. Examine Definition 3.3 carefully.

3.7. The key idea is similar to that for proving Proposition 3.5.

3.8. One direction follows from Proposition 3.5. For the other di-
rection, proceed by induction on the length of the shortest proof of β
from Σ ∪ {α}.

3.9. Again, don’t take these hints as gospel. Try using the Deduc-
tion Theorem in each case, plus

(1) A3.
(2) A3 and Problem 3.3.
(3) A3.
(4) A3, Problem 3.3, and Example 3.2.
(5) Some of the above parts and Problem 3.3.
(6) Ditto.
(7) Use the definition of ∨ and one of the above parts.
(8) Use the definition of ∧ and one of the above parts.
(9) Aim for ¬α→ (α→ ¬β) as an intermediate step.

20 HINTS FOR CHAPTERS 1–4

Hints for Chapter 4.

4.1. Use induction on the length of the deduction and Proposition
3.2.

4.2. Assume, by way of contradiction, that the given set of formulas
is inconsistent. Use the Soundness Theorem to show that it can’t be
satisfiable.

4.3. First show that {¬(α→ α)} ` ψ.

4.4. Note that deductions are finite sequences of formulas.

4.5. Use Proposition 4.4.

4.6. Use Proposition 4.2, the definition of Σ, and Proposition 2.4.

4.7. Assume, by way of contradiction, that ϕ /∈ Σ. Use Definition
4.2 and the Deduction Theorem to show that Σ must be inconsistent.

4.8. Use Definition 4.2 and Problem 3.9.

4.9. Use Definition 4.2 and Proposition 4.8.

4.10. Use Proposition 1.7 and induction on a list of all the formulas
of LP .

4.11. One direction is just Proposition 4.2. For the other, expand
the set of formulas in question to a maximally consistent set of formulas
Σ using Theorem 4.10, and define a truth assignment v by setting
v(An) = T if and only if An ∈ Σ. Now use induction on the length of
ϕ to show that ϕ ∈ Σ if and only if v satisfies ϕ.

4.12. Prove the contrapositive using Theorem 4.11.

4.13. Put Corollary 4.5 together with Theorem 4.11.

Part II

First-Order Logic

CHAPTER 5

Languages

As noted in the Introduction, propositional logic has obvious defi-
ciencies as a tool for mathematical reasoning. First-order logic remedies
enough of these to be adequate for formalizing most ordinary mathe-
matics. It does have enough in common with propositional logic to let
us recycle some of the material in Chapters 1–4.

A few informal words about how first-order languages work are in
order. In mathematics one often deals with structures consisting of
a set of elements plus various operations on them or relations among
them. To cite three common examples, a group is a set of elements
plus a binary operation on these elements satisfying certain conditions,
a field is a set of elements plus two binary operations on these elements
satisfying certain conditions, and a graph is a set of elements plus a
binary relation with certain properties. In most such cases, one fre-
quently uses symbols naming the operations or relations in question,
symbols for variables which range over the set of elements, symbols
for logical connectives such as not and for all , plus auxiliary symbols
such as parentheses, to write formulas which express some fact about
the structure in question. For example, if (G, ·) is a group, one might
express the associative law by writing something like

∀x∀y ∀z x · (y · z) = (x · y) · z ,
it being understood that the variables range over the set G of group
elements. A formal language to do as much will require some or all of
these: symbols for various logical notions and for variables, some for
functions or relations, plus auxiliary symbols. It will also be necessary
to specify rules for putting the symbols together to make formulas, for
interpreting the meaning and determining the truth of these formulas,
and for making inferences in deductions.

For a concrete example, consider elementary number theory. The
set of elements under discussion is the set of natural numbers N =
{ 0, 1, 2, 3, 4, . . . }. One might need symbols or names for certain inter-
esting numbers, say 0 and 1; for variables over N such as n and x; for
functions on N, say · and +; and for relations, say =, <, and |. In
addition, one is likely to need symbols for punctuation, such as (and

23

24 5. LANGUAGES

); for logical connectives, such as ¬ and →; and for quantifiers, such
as ∀ (“for all”) and ∃ (“there exists”). A statement of mathematical
English such as “For all n and m, if n divides m, then n is less than or
equal to m” can then be written as a cool formula like

∀n∀m (n | m→ (n < m ∧ n = m)) .

The extra power of first-order logic comes at a price: greater com-
plexity. First, there are many first-order languages one might wish to
use, practically one for each subject, or even problem, in mathematics.1

We will set up our definitions and general results, however, to apply to
a wide range of them.2

As with LP , our formal language for propositional logic, first-order
languages are defined by specifying their symbols and how these may
be assembled into formulas.

Definition 5.1. The symbols of a first-order language L include:

(1) Parentheses: (and).
(2) Connectives: ¬ and →.
(3) Quantifier: ∀.
(4) Variables: v0, v1, v2, . . . , vn, . . .
(5) Equality: =.
(6) A (possibly empty) set of constant symbols.
(7) For each k ≥ 1, a (possibly empty) set of k-place function

symbols.
(8) For each k ≥ 1, a (possibly empty) set of k-place relation (or

predicate) symbols.

The symbols described in parts 1–5 are the logical symbols of L, shared
by every first-order language, and the rest are the non-logical symbols
of L, which usually depend on what the language’s intended use.

Note. It is possible to define first-order languages without =, so =
is considered a non-logical symbol by many authors. While such lan-
guages have some uses, they are uncommon in ordinary mathematics.

Observe that any first-order language L has countably many logical
symbols. It may have uncountably many symbols if it has uncountably
many non-logical symbols. Unless explicitly stated otherwise, we will

1It is possible to formalize almost all of mathematics in a single first-order
language, like that of set theory or category theory. However, trying to actually do
most mathematics in such a language is so hard as to be pointless.

2Specifically, to countable one-sorted first-order languages with equality.

5. LANGUAGES 25

assume that every first-order language we encounter has only count-
ably many non-logical symbols. Most of the results we will prove actu-
ally hold for countable and uncountable first-order languages alike, but
some require heavier machinery to prove for uncountable languages.

Just as in LP , the parentheses are just punctuation while the con-
nectives, ¬ and →, are intended to express not and if . . . then. How-
ever, the rest of the symbols are new and are intended to express ideas
that cannot be handled by LP . The quantifier symbol, ∀, is meant to
represent for all , and is intended to be used with the variable symbols,
e.g. ∀v4. The constant symbols are meant to be names for particular
elements of the structure under discussion. k-place function symbols
are meant to name particular functions which map k-tuples of elements
of the structure to elements of the structure. k-place relation symbols
are intended to name particular k-place relations among elements of
the structure.3 Finally, = is a special binary relation symbol intended
to represent equality.

Example 5.1. Since the logical symbols are always the same, first-
order languages are usually defined by specifying the non-logical sym-
bols. A formal language for elementary number theory like that unof-
ficially described above, call it LNT , can be defined as follows.

• Constant symbols: 0 and 1
• Two 2-place function symbols: + and ·
• Two binary relation symbols: < and |

Each of these symbols is intended to represent the same thing it does
in informal mathematical usage: 0 and 1 are intended to be names
for the numbers zero and one, + and · names for the operations of
addition and multiplications, and < and | names for the relations “less
than” and “divides”. (Note that we could, in principle, interpret things
completely differently – let 0 represent the number forty-one, + the
operation of exponentiation, and so on – or even use the language to
talk about a different structure – say the real numbers, R, with 0,
1, +, ·, and < representing what they usually do and, just for fun,
| interpreted as “is not equal to”. More on this in Chapter 6.) We
will usually use the same symbols in our formal languages that we use
informally for various common mathematical objects. This convention

3Intuitively, a relation or predicate expresses some (possibly arbitrary) relation-
ship among one or more objects. For example, “n is prime” is a 1-place relation
on the natural numbers, < is a 2-place or binary relation on the rationals, and
~a× (~b × ~c) = ~0 is a 3-place relation on R3. Formally, a k-place relation on a set X
is just a subset of Xk, i.e. the collection of sequences of length k of elements of X
for which the relation is true.

26 5. LANGUAGES

can occasionally cause confusion if it is not clear whether an expression
involving these symbols is supposed to be an expression in a formal
language or not.

Example 5.2. Here are some other first-order languages. Recall
that we need only specify the non-logical symbols in each case and
note that some parts of Definitions 5.2 and 5.3 may be irrelevant for
a given language if it is missing the appropriate sorts of non-logical
symbols.

(1) The language of pure equality, L=:
• No non-logical symbols at all.

(2) A language for fields, LF :
• Constant symbols: 0, 1
• 2-place function symbols: +, ·

(3) A language for set theory, LS :
• 2-place relation symbol: ∈

(4) A language for linear orders, LO:
• 2-place relation symbol: <

(5) Another language for elementary number theory, LN :
• Constant symbol: 0
• 1-place function symbol: S
• 2-place function symbols: +, ·, E

Here 0 is intended to represent zero, S the successor func-
tion, i.e. S(n) = n + 1, and E the exponential function, i.e.
E(n,m) = nm.

(6) A “worst-case” countable language, L1:
• Constant symbols: c1, c2, c3, . . .
• For each k ≥ 1, k-place function symbols: fk1 , fk2 , fk3 , . . .
• For each k ≥ 1, k-place relation symbols: P k

1 , P k
2 , P k

3 , . . .
This language has no use except as an abstract example.

It remains to specify how to form valid formulas from the symbols
of a first-order language L. This will be more complicated than it was
for LP . In fact, we first need to define a type of expression in L which
has no counterpart in propositional logic.

Definition 5.2. The terms of a first-order language L are those
finite sequences of symbols of L which satisfy the following rules:

(1) Every variable symbol vn is a term.
(2) Every constant symbol c is a term.
(3) If f is a k-place function symbol and t1, . . . , tk are terms, then

ft1 . . . tk is also a term.
(4) Nothing else is a term.

5. LANGUAGES 27

That is, a term is an expression which represents some (possibly
indeterminate) element of the structure under discussion. For example,
in LNT or LN , +v0v1 (informally, v0 + v1) is a term, though precisely
which natural number it represents depends on what values are assigned
to the variables v0 and v1.

Problem 5.1. Which of the following are terms of one of the lan-
guages defined in Examples 5.1 and 5.2? If so, which of these lan-
guage(s) are they terms of; if not, why not?

(1) ·v2

(2) +0 ·+v611
(3) |1 + v30
(4) (< E101→ +11)
(5) + + ·+ 00000
(6) f3

4 f
2
7 c4v9c1v4

(7) ·v5(+1v8)
(8) < v6v2

(9) 1 + 0

Note that in languages with no function symbols all terms have
length one.

Problem 5.2. Choose one of the languages defined in Examples
5.1 and 5.2 which has terms of length greater than one and determine
the possible lengths of terms of this language.

Proposition 5.3. The set of terms of a countable first-order lan-
guage L is countable.

Having defined terms, we can finally define first-order formulas.

Definition 5.3. The formulas of a first-order language L are the
finite sequences of the symbols of L satisfying the following rules:

(1) If P is a k-place relation symbol and t1, . . . , tk are terms, then
Pt1 . . . tk is a formula.

(2) If t1 and t2 are terms, then = t1t2 is a formula.
(3) If α is a formula, then (¬α) is a formula.
(4) If α and β are formulas, then (α→ β) is a formula.
(5) If ϕ is a formula and vn is a variable, then ∀vnϕ is a formula.
(6) Nothing else is a formula.

Formulas of form 1 or 2 will often be referred to as the atomic formulas
of L.

Note that three of the conditions in Definition 5.3 are borrowed
directy from propositional logic. As before, we will exploit the way

28 5. LANGUAGES

formulas are built up in making definitions and in proving results by
induction on the length of a formula. We will also recycle the use
of lower-case Greek characters to refer to formulas and of upper-case
Greek characters to refer to sets of formulas.

Problem 5.4. Which of the following are formulas of one of the
languages defined in Examples 5.1 and 5.2? If so, which of these lan-
guage(s) are they formulas of; if not, why not?

(1) = 0 + v7 · 1v3

(2) (¬ = v1v1)
(3) (|v20→ ·01)
(4) (¬∀v5(= v5v5))
(5) < +01|v1v3

(6) (v3 = v3 → ∀v5 v3 = v5)
(7) ∀v6(= v60→ ∀v9(¬|v9v6))
(8) ∀v8 < +11v4

Problem 5.5. Show that every formula of a first-order language
has the same number of left parentheses as of right parentheses.

Problem 5.6. Choose one of the languages defined in Examples 5.1
and 5.2 and determine the possible lengths of formulas of this language.

Proposition 5.7. A countable first-order language L has countably
many formulas.

In practice, devising a formal language intended to deal with a par-
ticular (kind of) structure isn’t the end of the job: one must also specify
axioms in the language that the structure(s) one wishes to study should
satisfy. Defining satisfaction is officially done in the next chapter, but
it is usually straightforward to unofficially figure out what a formula
in the language is supposed to mean.

Problem 5.8. In each case, write down a formula of the given
language expressing the given informal statement.

(1) “Addition is associative” in LF .
(2) “There is an empty set” in LS .
(3) “Between any two distinct elements there is a third element”

in LO.
(4) “n0 = 1 for every n different from 0” in LN .
(5) “There is only one thing” in L=.

Problem 5.9. Define first-order languages to deal with the follow-
ing structures and, in each case, an appropriate set of axioms in your
language:

5. LANGUAGES 29

(1) Groups.
(2) Graphs.
(3) Vector spaces.

We will need a few additional concepts and facts about formulas of
first-order logic later on. First, what are the subformulas of a formula?

Problem 5.10. Define the set of subformulas of a formula ϕ of a
first-order language L.

For example, if ϕ is

(((¬∀v1 (¬ = v1c7))→ P 2
3 v5v8)→ ∀v8(= v8f

3
5 c0v1v5 → P 1

2 v8))

in the language L1, then the set of subformulas of ϕ, S(ϕ), ought to
include

• = v1c7, P 2
3 v5v8, = v8f

3
5 c0v1v5, P

1
2 v8,

• (¬ = v1c7), (= v8f
3
5 c0v1v5 → P 1

2 v8),
• ∀v1 (¬ = v1c7), ∀v8(= v8f

3
5 c0v1v5 → P 1

2 v8),
• (¬∀v1 (¬ = v1c7)),
• (¬∀v1 (¬ = v1c7))→ P 2

3 v5v8), and
• (((¬∀v1 (¬ = v1c7))→ P 2

3 v5v8) → ∀v8(= v8f
3
5 c0v1v5 → P 1

2 v8))
itself.

Second, we will need a concept that has no counterpart in proposi-
tional logic.

Definition 5.4. Suppose x is a variable of a first-order language
L. Then x occurs free in a formula ϕ of L is defined as follows:

(1) If ϕ is atomic, then x occurs free in ϕ if and only if x occurs
in ϕ.

(2) If ϕ is (¬α), then x occurs free in ϕ if and only if x occurs free
in α.

(3) If ϕ is (β → δ), then x occurs free in ϕ if and only if x occurs
free in β or in δ.

(4) If ϕ is ∀vk ψ, then x occurs free in ϕ if and only if x is different
from vk and x occurs free in ψ.

An occurrence of x in ϕ which is not free is said to be bound . A formula
σ of L in which no variable occurs free is said to be a sentence.

Part 4 is the key: it asserts that an occurrence of a variable x
is bound instead of free if it is in the “scope” of an occurrence of
∀x. For example, v7 is free in ∀v5 = v5v7, but v5 is not. Different
occurences of a given variable in a formula may be free or bound,
depending on where they are; e.g. v6 occurs both free and bound in
∀v0 (= v0f

1
3 v6 → (¬∀v6P

1
9 v6)).

30 5. LANGUAGES

Problem 5.11. Give a precise definition of the scope of a quanti-
fier.

Note the distinction between sentences and ordinary formulas intro-
duced in the last part of Definition 5.4. As we shall see, sentences are
often more tractable and useful theoretically than ordinary formulas.

Problem 5.12. Which of the formulas you gave in solving Prob-
lem 5.8 are sentences?

Finally, we will eventually need to consider a relationship between
first-order languages.

Definition 5.5. A first-order language L′ is an extension of a first-
order language L, sometimes written as L ⊆ L′, if every non-logical
symbol of L is a non-logical symbol of the same kind of L′.

For example, every first-order language is an extension of L=.

Problem 5.13. Which of the languages given in Example 5.2 are
extensions of other languages given in Example 5.2?

Proposition 5.14. Suppose L is a first-order language and L′ is
an extension of L. Then every formula ϕ of L is a formula of L′.

Common Conventions. As with propositional logic, we will often
use abbreviations and informal conventions to simplify the writing of
formulas in first-order languages. In particular, we will use the same
additional connectives we used in propositional logic, plus an additional
quantifier, ∃ (“there exists”):

• (α ∧ β) is short for (¬(α→ (¬β))).
• (α ∨ β) is short for ((¬α)→ β).
• (α↔ β) is short for ((α→ β) ∧ (β → α)).
• ∃vkϕ is short for (¬∀vk(¬ϕ)).

(∀ is often called the universal quantifier and ∃ is often called the
existential quantifier.)

Parentheses will often be omitted in formulas according to the same
conventions we used in propositional logic, with the modification that
∀ and ∃ take precedence over all the logical connectives:

• We will usually drop the outermost parentheses in a formula,
writing α→ β instead of (α→ β) and ¬α instead of (¬α).
• We will let ∀ take precedence over ¬, and ¬ take precedence

over→ when parentheses are missing, and fit the informal ab-
breviations into this scheme by letting the order of precedence
be ∀, ∃, ¬, ∧, ∨, →, and ↔.

5. LANGUAGES 31

• Finally, we will group repetitions of →, ∨, ∧, or ↔ to the
right when parentheses are missing, so α→ β → γ is short for
(α→ (β → γ)).

For example, ∃vk¬α → ∀vnβ is short for ((¬∀vk(¬(¬α))) → ∀vnβ).
On the other hand, we will sometimes add parentheses and arrange
things in unofficial ways to make terms and formulas easier to read. In
particular we will often write

(1) f(t1, . . . , tk) for ft1 . . . tk if f is a k-place function symbol and
t1, . . . , tk are terms,

(2) s ◦ t for ◦st if ◦ is a 2-place function symbol and s and t are
terms,

(3) P (t1, . . . , tk) for Pt1 . . . tk if P is a k-place relation symbol and
t1, . . . , tk are terms,

(4) s • t for •st if • is a 2-place relation symbol and s and t are
terms, and

(5) s = t for = st if s and t are terms, and
(6) enclose terms in parentheses to group them.

Thus, we could write the formula = +1 ·0v6 ·11 of LNT as 1+ (0 · v6) =
1 · 1.

As was observed in Example 5.1, it is customary in devising a formal
language to recycle the same symbols used informally for the given
objects. In situations where we want to talk about symbols without
committing ourselves to a particular one, such as when talking about
first-order languages in general, we will often use “generic” choices:

• a, b, c, . . . for constant symbols;
• x, y, z, . . . for variable symbols;
• f , g, h, . . . for function symbols;
• P , Q, R, . . . for relation symbols; and
• r, s, t, . . . for generic terms.

These can be thought of as variables in the metalanguage4 ranging over
different kinds objects of first-order logic, much as we’re already using
lower-case Greek characters as variables which range over formulas. (In
fact, we have already used some of these conventions in this chapter. . .)

Unique Readability. The slightly paranoid might ask whether
Definitions 5.1, 5.2 and 5.3 actually ensure that the terms and formulas
of a first-order language L are unambiguous, i.e. cannot be read in

4The metalanguage is the language, mathematical English in this case, in which
we talk about a language. The theorems we prove about formal logic are, strictly
speaking, metatheorems, as opposed to the theorems proved within a formal logical
system. For more of this kind of stuff, read some philosophy. . .

32 5. LANGUAGES

more than one way. As with LP , to actually prove this one must
assume that all the symbols of L are distinct and that no symbol is a
subsequence of any other symbol. It then follows that:

Theorem 5.15. Any term of a first-order language L satisfies ex-
actly one of conditions 1–3 in Definition 5.2.

Theorem 5.16 (Unique Readability Theorem). Any formula of a
first-order language satisfies exactly one of conditions 1–5 in Definition
5.3.

CHAPTER 6

Structures and Models

Defining truth and implication in first-order logic is a lot harder
than it was in propositional logic. First-order languages are intended
to deal with mathematical objects like groups or linear orders, so it
makes little sense to speak of the truth of a formula without specifying
a context. For example, one can write down a formula expressing the
commutative law in a language for group theory, ∀x∀y x · y = y · x,
but whether it is true or not depends on which group we’re dealing
with. It follows that we need to make precise which mathematical
objects or structures a given first-order language can be used to discuss
and how, given a suitable structure, formulas in the language are to
be interpreted. Such a structure for a given language should supply
most of the ingredients needed to interpret formulas of the language.
Throughout this chapter, let L be an arbitrary fixed countable first-
order language. All formulas will be assumed to be formulas of L unless
stated otherwise.

Definition 6.1. A structure M for L consists of the following:

(1) A non-empty set M , often written as |M|, called the universe
of M.

(2) For each constant symbol c of L, an element cM of M .
(3) For each k-place function symbol f of L, a function fM :

Mk →M , i.e. a k-place function on M .
(4) For each k-place relation symbol P of L, a relation PM ⊆ Mk,

i.e. a k-place relation on M .

That is, a structure supplies an underlying set of elements plus in-
terpretations for the various non-logical symbols of the language: con-
stant symbols are interpreted by particular elements of the underlying
set, function symbols by functions on this set, and relation symbols by
relations among elements of this set.

It is customary to use upper-case “gothic” characters such as M

and N for structures.
For example, consider Q = (Q, <), where < is the usual “less than”

relation on the rationals. This is a structure for LO, the language for
linear orders defined in Example 5.2; it supplies a 2-place relation to

33

34 6. STRUCTURES AND MODELS

interpret the language’s 2-place relation symbol. Q is not the only
possible structure for LO: (R, <), ({0}, ∅), and (N,N2) are three others
among infinitely many more. (Note that in these cases the relation
symbol < is interpreted by relations on the universe which are not
linear orders. One can ensure that a structure satisfy various condi-
tions beyond what Definition 6.1 guarantees by requiring appropriate
formulas to be true when interpreted in the structure.) On the other
hand, (R) is not a structure for LO because it lacks a binary relation
to interpret the symbol < by, while (N, 0, 1,+, ·, |, <) is not a structure
for LO because it has two binary relations where LO has a symbol only
for one, plus constants and functions for which LO lacks symbols.

Problem 6.1. The first-order languages referred to below were all
defined in Example 5.2.

(1) Is (∅) a structure for L=?
(2) Determine whether Q = (Q, <) is a structure for each of L=,
LF , and LS.

(3) Give three different structures for LF which are not fields.

To determine what it means for a given formula to be true in a
structure for the corresponding language, we will also need to specify
how to interpret the variables when they occur free. (Bound variables
have the associated quantifier to tell us what to do.)

Definition 6.2. Let V = { v0, v1, v2, . . .} be the set of all variable
symbols of L and suppose M is a structure for L. A function s : V →
|M| is said to be an assignment for M.

Note that these are not truth assignments like those for LP . An
assignment just interprets each variable in the language by an element
of the universe of the structure. Also, as long as the universe of the
structure has more than one element, any variable can be interpreted
in more than one way. Hence there are usually many different possible
assignments for a given structure.

Example 6.1. Consider the structure R = (R, 0, 1,+, ·) for LF .
Each of the following functions V → R is an assignment for R:

(1) p(vn) = π for each n,
(2) r(vn) = en for each n, and
(3) s(vn) = n+ 1 for each n.

In fact, every function V → R is an assignment for R.

In order to use assignments to determine whether formulas are true
in a structure, we need to know how to use an assignment to interpret
each term of the language as an element of the universe.

6. STRUCTURES AND MODELS 35

Definition 6.3. Suppose M is a structure for L and s : V → |M|
is an assignment for M. Let T be the set of all terms of L. Then the
extended assignment s : T → |M| is defined inductively as follows:

(1) For each variable x, s(x) = s(x).
(2) For each constant symbol c, s(c) = cM.
(3) For every k-place function symbol f and terms t1, . . . , tk,

s(ft1 . . . tk) = fM(s(t1), . . . , s(tk)).

Example 6.2. Let R be the structure for LF given in Example
6.1, and let p, r, and s be the extended assignments corresponding to
the assignments p, r, and s defined in Example 6.1. Consider the term
+ · v6v0 + 0v3 of LF . Then:

(1) p(+ · v6v0 + 0v3) = π2 + π,
(2) r(+ · v6v0 + 0v3) = e6 + e3, and
(3) s(+ · v6v0 + 0v3) = 11.

Here’s why for the last one: since s(v6) = 7, s(v0) = 1, s(v3) = 4,
and s(0) = 0 (by part 2 of Definition 6.3), it follows from part 3 of
Definition 6.3 that s(+ · v6v0 + 0v3) = (7 · 1) + (0 + 4) = 7 + 4 = 11.

Problem 6.2. N = (N, 0, S,+, ·, E) is a structure for LN . Let
s : V → N be the assignment defined by s(vk) = k + 1. What are
s(E + v19v1 · 0v45) and s(SSS + E0v6v7)?

Proposition 6.3. s is unique, i.e. given an assignment s, no other
function T → |M| satisfies conditions 1–3 in Definition 6.3.

With Definitions 6.2 and 6.3 in hand, we can take our first cut at
defining what it means for a first-order formula to be true.

Definition 6.4. Suppose M is a structure for L, s is an assignment
for M, and ϕ is a formula of L. Then M |= ϕ[s] is defined as follows:

(1) If ϕ is t1 = t2 for some terms t1 and t2, then M |= ϕ[s] if and
only if s(t1) = s(t2).

(2) If ϕ is Pt1 . . . tk for some k-place relation symbol P and terms
t1, . . . , tk, then M |= ϕ[s] if and only if (s(t1), . . . , s(tk)) ∈ PM,
i.e. PM is true of (s(t1), . . . , s(tk)).

(3) If ϕ is (¬ψ) for some formula ψ, then M |= ϕ[s] if and only if
it is not the case that M |= ψ[s].

(4) If ϕ is (α → β), then M |= ϕ[s] if and only if M |= β[s]
whenever M |= α[s], i.e. unless M |= α[s] but not M |= β[s].

(5) If ϕ is ∀x δ for some variable x, then M |= ϕ[s] if and only if for
all m ∈ |M|, M |= δ[s(x|m)], where s(x|m) is the assignment

36 6. STRUCTURES AND MODELS

given by

s(x|m)(vk) =

{
s(vk) if vk is different from x

m if vk is x.

If M |= ϕ[s], we shall say that M satisfies ϕ on assignment s or that
ϕ is true in M on assignment s. We will often write M 2 ϕ[s] if it is
not the case that M |= ϕ[s]. Also, if Γ is a set of formulas of L, we
shall take M |= Γ[s] to mean that M |= γ[s] for every formula γ in Γ
and say that M satisfies Γ on assignment s. Similarly, we shall take
M 2 Γ[s] to mean that M 2 γ[s] for some formula γ in Γ.

Clauses 1 and 2 are pretty straightforward and clauses 3 and 4 are
essentially identical to the corresponding parts of Definition 2.1. The
key clause is 5, which says that ∀ should be interpreted as “for all
elements of the universe”.

Example 6.3. Let R be the structure for LF and s the assignment
for R given in Example 6.1, and consider the formula ∀v1 (= v3·0v1 →=
v30) of LF . We can verify that R |= ∀v1 (= v3 · 0v1 →= v30) [s] as
follows:

R |= ∀v1 (= v3 · 0v1 →= v30) [s]

⇐⇒ for all a ∈ |R|, R |= (= v3 · 0v1 →= v30) [s(v1|a)]

⇐⇒ for all a ∈ |R|, if R |== v3 · 0v1 [s(v1|a)],

then R |== v30 [s(v1|a)]

⇐⇒ for all a ∈ |R|, if s(v1|a)(v3) = s(v1|a)(·0v1),

then s(v1|a)(v3) = s(v1|a)(0)

⇐⇒ for all a ∈ |R|, if s(v3) = s(v1|a)(0) · s(v1|a)(v1), then s(v3) = 0

⇐⇒ for all a ∈ |R|, if s(v3) = 0 · a, then s(v3) = 0

⇐⇒ for all a ∈ |R|, if 4 = 0 · a, then 4 = 0

⇐⇒ for all a ∈ |R|, if 4 = 0, then 4 = 0

. . . which last is true whether or not 4 = 0 is true or false.

Problem 6.4. Let N be the structure for LN in Problem 6.2. Let
p : V → N be defined by p(v2k) = k and p(v2k+1) = k. Verify that

(1) N |= ∀w (¬Sw = 0) [p] and
(2) N 2 ∀x∃y x + y = 0 [p].

Proposition 6.5. Suppose M is a structure for L, s is an as-
signment for M, x is a variable, and ϕ is a formula of a first-order
language L. Then M |= ∃xϕ[s] if and only if M |= ϕ[s(x|m)] for some
m ∈ |M|.

6. STRUCTURES AND MODELS 37

Working with particular assignments is difficult but, while some-
times unavoidable, not always necessary.

Definition 6.5. Suppose M is a structure for L, and ϕ a formula
of L. Then M |= ϕ if and only if M |= ϕ[s] for every assignment
s : V → |M| for M. M is a model of ϕ or that ϕ is true in M if
M |= ϕ. We will often write M 2 ψ if it is not the case that M |= ψ.

Similarly, if Γ is a set of formulas, we will write M |= Γ if M |= γ
for every formula γ ∈ Γ, and say that M is a model of Γ or that M

satisfies Γ. A formula or set of formulas is satisfiable if there is some
structure M which satisfies it. We will often write M 2 Γ if it is not
the case that M |= Γ.

Note. M 2 ϕ does not mean that for every assignment s : V →
|M|, it is not the case that M |= ϕ[s]. It only means that that there is
some assignment r : V → |M| for which M |= ϕ[r] is not true.

Problem 6.6. Q = (Q, <) is a structure for LO. For each of the
following formulas ϕ of LO, determine whether or not Q |= ϕ.

(1) ∀v0 ∃v2 v0 < v2

(2) ∃v1 ∀v3 (v1 < v3 → v1 = v3)
(3) ∀v4 ∀v5 ∀v6(v4 < v5 → (v5 < v6 → v4 < v6))

The following facts are counterparts of sorts for Proposition 2.2.
Their point is that what a given assignment does with a given term or
formula depends only on the assignment’s values on the (free) variables
of the term or formula.

Lemma 6.7. Suppose M is a structure for L, t is a term of L, and
r and s are assignments for M such that r(x) = s(x) for every variable
x which occurs in t. Then r(t) = s(t).

Proposition 6.8. Suppose M is a structure for L, ϕ is a formula
of L, and r and s are assignments for M such that r(x) = s(x) for
every variable x which occurs free in ϕ. Then M |= ϕ[r] if and only if
M |= ϕ[s].

Corollary 6.9. Suppose M is a structure for L and σ is a sen-
tence of L. Then M |= σ if and only if there is some assignment
s : V → |M| for M such that M |= σ[s].

Thus sentences are true or false in a structure independently of any
particular assignment. This does not necessarily make life easier when
trying to verify whether a sentence is true in a structure – try doing
Problem 6.6 again with the above results in hand – but it does let us

38 6. STRUCTURES AND MODELS

simplify things on occasion when proving things about sentences rather
than formulas.

We recycle a sense in which we used |= in propositional logic.

Definition 6.6. Suppose Γ is a set of formulas of L and ψ is a
formula of L. Then Γ implies ψ, written as Γ |= ψ, if M |= ψ whenever
M |= Γ for every structure M for L.

Similarly, if Γ and ∆ are sets of formulas of L, then Γ implies ∆,
written as Γ |= ∆, if M |= ∆ whenever M |= Γ for every structure M

for L.
We will usually write |= . . . for ∅ |=

Proposition 6.10. Suppose α and β are formulas of some first-
order language. Then { (α→ β), α } |= β.

Proposition 6.11. Suppose Σ is a set of formulas and ψ and ρ
are formulas of some first-order language. Then Σ ∪ {ψ} |= ρ if and
only if Σ |= (ψ → ρ).

Definition 6.7. A formula ψ of L is a tautology if it is true in
every structure, i.e. if |= ψ. ψ is a contradiction if ¬ψ is a tautology,
i.e. if |= ¬ψ.

For some trivial examples, let ϕ be a formula of L and M a structure
for L. Then M |= {ϕ} if and only if M |= ϕ, so it must be the case
that {ϕ} |= ϕ. It is also easy to check that ϕ → ϕ is a tautology and
¬(ϕ→ ϕ) is a contradiction.

Problem 6.12. Show that ∀y y = y is a tautology and that ∃y ¬y =
y is a contradiction.

Problem 6.13. Suppose ϕ is a contradiction. Show that M |= ϕ[s]
is false for every structure M and assignment s : V → |M| for M.

Problem 6.14. Show that a set of formulas Σ is satisfiable if and
only if there is no contradiction χ such that Σ |= χ.

The following fact is a counterpart of Proposition 2.4.

Proposition 6.15. Suppose M is a structure for L and α and β
are sentences of L. Then:

(1) M |= ¬α if and only if M 2 α.
(2) M |= α → β if and only if M |= β whenever M |= α.
(3) M |= α ∨ β if and only if M |= α or M |= β.
(4) M |= α ∧ β if and only if M |= α and M |= β.
(5) M |= α ↔ β if and only if M |= α exactly when M |= β.
(6) M |= ∀xα if and only if M |= α.

6. STRUCTURES AND MODELS 39

(7) M |= ∃xα if and only if there is some m ∈ |M| so that M |=
α [s(x|m)] for every assignment s for M.

Problem 6.16. How much of Proposition 6.15 must remain true
if α and β are not sentences?

Recall that by Proposition 5.14 a formula of a first-order language
is also a formula of any extension of the language. The following rela-
tionship between extension languages and satisfiability will be needed
later on.

Proposition 6.17. Suppose L is a first-order language, L′ is an
extension of L, and Γ is a set of formulas of L. Then Γ is satisfiable
in a structure for L if and only if Γ is satisfiable in a structure for L′.

One last bit of terminology. . .

Definition 6.8. If M is a structure for L, then the theory of M is
just the set of all sentences of L true in M, i.e.

Th(M) = { τ | τ is a sentence and M |= τ }.
If ∆ is a set of sentences and S is a collection of structures, then ∆ is
a set of (non-logical) axioms for S if for every structure M, M ∈ S if
and only if M |= ∆.

Example 6.4. Consider the sentence ∃x∃y ((¬x = y) ∧ ∀z (z =
x∨ z = y)) of L=. Every structure of L= satisfying this sentence must
have exactly two elements in its universe, so { ∃x∃y ((¬x = y)∧∀z (z =
x ∨ z = y)) } is a set of non-logical axioms for the collection of sets of
cardinality 2:

{M |M is a structure for L= with exactly 2 elements} .
Problem 6.18. In each case, find a suitable language and a set of

axioms in it for the given collection of structures.

(1) Sets of size 3.
(2) Bipartite graphs.
(3) Commutative groups.
(4) Fields of characteristic 5.

CHAPTER 7

Deductions

Deductions in first-order logic are not unlike deductions in propo-
sitional logic. Of course, some changes are necessary to handle the
various additional features of propositional logic, especially quantifiers.
In particular, one of the new axioms requires a tricky preliminary def-
inition. Roughly, the problem is that we need to know when we can
replace occurrences of a variable in a formula by a term without letting
any variable in the term get captured by a quantifier.

Throughout this chapter, let L be a fixed arbitrary first-order lan-
guage. Unless stated otherwise, all formulas will be assumed to be
formulas of L.

Definition 7.1. Suppose x is a variable, t is a term, and ϕ is a
formula. Then t is substitutable for x in ϕ is defined as follows:

(1) If ϕ is atomic, then t is substitutable for x in ϕ.
(2) If ϕ is (¬ψ), then t is substitutable for x in ϕ if and only if t

is substitutable for x in ψ.
(3) If ϕ is (α → β), then t is substitutable for x in ϕ if and only

if t is substitutable for x in α and t is substitutable for x in β.
(4) If ϕ is ∀y δ, then t is substitutable for x in ϕ if and only if

either
(a) x does not occur free in ϕ, or
(b) if y does not occur in t and t is substitutable for x in δ.

For example, x is always substitutable for itself in any formula
ϕ and ϕxx is just ϕ (see Problem 7.1). On the other hand, y is not
substitutable for x in ∀y x = y because if x were to be replaced by y,
the new instance of y would be “captured” by the quantifier ∀y. This
makes a difference to the truth of the formula. The truth of ∀y x = y
depends on the structure in which it is interpreted — it’s true if the
universe has only one element and false otherwise — but ∀y y = y is
a tautology by Problem 6.12 so it is true in any structure whatsoever.
This sort of difficulty makes it necessary to be careful when substituting
for variables.

41

42 7. DEDUCTIONS

Definition 7.2. Suppose x is a variable, t is a term, and ϕ is
a formula. If t is substitutable for x in ϕ, then ϕxt (i.e. ϕ with t
substituted for x) is defined as follows:

(1) If ϕ is atomic, then ϕxt is the formula obtained by replacing
each occurrence of x in ϕ by t.

(2) If ϕ is (¬ψ), then ϕxt is the formula (¬ψxt).
(3) If ϕ is (α→ β), then ϕxt is the formula (αxt → βxt).
(4) If ϕ is ∀y δ, then ϕxt is the formula

(a) ∀y δ if x is y, and
(b) ∀y δxt if x isn’t y.

Problem 7.1. (1) Is x substitutable for z in ψ if ψ is z =
x→ ∀z z = x? If so, what is ψzx?

(2) Show that if t is any term and σ is a sentence, then t is sub-
stitutable in σ for any variable x. What is σxt ?

(3) Show that if t is a term in which no variable occurs that occurs
in the formula ϕ, then t is substitutable in ϕ for any variable
x.

(4) Show that x is substitutable for x in ϕ for any variable x and
any formula ϕ, and that ϕxx is just ϕ.

Along with the notion of substitutability, we need an additional
notion in order to define the logical axioms of L.

Definition 7.3. If ϕ is any formula and x1, . . . , xn are any vari-
ables, then ∀x1 . . . ∀xn ϕ is said to be a generalization of ϕ.

For example, ∀y ∀x (x = y → fx = fy) and ∀z (x = y → fx = fy)
are (different) generalizations of x = y → fx = fy, but ∀x∃y (x =
y → fx = fy) is not. Note that the variables being quantified don’t
have to occur in the formula being generalized.

Lemma 7.2. Any generalization of a tautology is a tautology.

Definition 7.4. Every first-order language L has eight logical ax-
iom schema :

A1: (α→ (β → α))
A2: ((α→ (β → γ))→ ((α→ β)→ (α→ γ)))
A3: (((¬β)→ (¬α))→ (((¬β)→ α)→ β))
A4: (∀xα→ αxt), if t is substitutable for x in α.
A5: (∀x (α→ β)→ (∀xα→ ∀xβ))
A6: (α→ ∀xα), if x does not occur free in α.
A7: x = x

7. DEDUCTIONS 43

A8: (x = y → (α → β)), if α is atomic and β is obtained from
α by replacing some occurrences (possibly all or none) of x in
α by y.

Plugging in any particular formulas of L for α, β, and γ, and any
particular variables for x and y, in any of A1–A8 gives a logical axiom
of L. In addition, any generalization of a logical axiom of L is also a
logical axiom of L.

The reason for calling the instances of A1–A8 the logical axioms,
instead of just axioms, is to avoid conflict with Definition 6.8.

Problem 7.3. Determine whether or not each of the following for-
mulas is a logical axiom.

(1) ∀x∀z (x = y → (x = c→ x = y))
(2) x = y → (y = z → z = x)
(3) ∀z (x = y → (x = c→ y = c))
(4) ∀w ∃x (Pwx→ Pww) → ∃x (Pxx→ Pxx)
(5) ∀x (∀x c = fxc→ ∀x∀x c = fxc)
(6) (∃xPx→ ∃y ∀z Rzfy) → ((∃xPx→ ∀y ¬∀z Rzfy)→ ∀x¬Px)

Proposition 7.4. Every logical axiom is a tautology.

Note that we have recycled our axiom schemas A1—A3 from propo-
sitional logic. We will also recycle MP as the sole rule of inference for
first-order logic.

Definition 7.5 (Modus Ponens). Given the formulas ϕ and (ϕ→
ψ), one may infer ψ.

As in propositional logic, we will usually refer to Modus Ponens by
its initials, MP. That MP preserves truth in the sense of Chapter 6
follows from Problem 6.10. Using the logical axioms and MP, we can
execute deductions in first-order logic just as we did in propositional
logic.

Definition 7.6. Let ∆ be a set of formulas of the first-order lan-
guage L. A deduction or proof from ∆ in L is a finite sequence
ϕ1ϕ2 . . . ϕn of formulas of L such that for each k ≤ n,

(1) ϕk is a logical axiom, or
(2) ϕk ∈ ∆, or
(3) there are i, j < k such that ϕk follows from ϕi and ϕj by MP.

A formula of ∆ appearing in the deduction is usually referred to as a
premiss of the deduction. ∆ proves a formula α, written as ∆ ` α, if
α is the last formula of a deduction from ∆. We’ll usually write ` α

44 7. DEDUCTIONS

instead of ∅ ` α. Finally, if Γ and ∆ are sets of formulas, we’ll take
Γ ` ∆ to mean that Γ ` δ for every formula δ ∈ ∆.

Note. We have reused the axiom schema, the rule of inference, and
the definition of deduction from propositional logic. It follows that any
deduction of propositional logic can be converted into a deduction of
first-order logic simply by replacing the formulas of LP occurring in
the deduction by first-order formulas. Feel free to appeal to the deduc-
tions in the exercises and problems of Chapter 3. You should probably
review the Examples and Problems of Chapter 3 before going on, since
most of the rest of this Chapter concentrates on what is different about
deductions in first-order logic.

Example 7.1. We’ll show that {α} ` ∃xα for any first-order for-
mula α and any variable x.

(1) (∀x¬α→ ¬α)→ (α→ ¬∀x¬α) Problem 3.9.5
(2) ∀x¬α→ ¬α A4
(3) α→ ¬∀x¬α 1,2 MP
(4) α Premiss
(5) ¬∀x¬α 3,4 MP
(6) ∃xα Definition of ∃

Strictly speaking, the last line is just for our convenience, like ∃ itself.

Problem 7.5. Show that:

(1) ` ∀xϕ→ ∀y ϕxy , if y does not occur at all in ϕ.
(2) ` α ∨ ¬α.
(3) {c = d} ` ∀z Qazc→ Qazd.
(4) ` x = y → y = x.
(5) {∃xα} ` α if x does not occur free in α.

Many general facts about deductions can be recycled from propo-
sitional logic, including the Deduction Theorem.

Proposition 7.6. If ϕ1ϕ2 . . . ϕn is a deduction of L, then ϕ1 . . . ϕ`
is also a deduction of L for any ` such that 1 ≤ ` ≤ n.

Proposition 7.7. If Γ ` δ and Γ ` δ → β, then Γ ` β.

Proposition 7.8. If Γ ⊆ ∆ and Γ ` α, then ∆ ` α.

Proposition 7.9. Then if Γ ` ∆ and ∆ ` σ, then Γ ` σ.

Theorem 7.10 (Deduction Theorem). If Σ is any set of formulas
and α and β are any formulas, then Σ ` α→ β if and only if Σ∪{α} `
β.

7. DEDUCTIONS 45

Just as in propositional logic, the Deduction Theorem is useful be-
cause it often lets us take shortcuts when trying to show that deductions
exist. There is also another result about first-order deductions which
often supplies useful shortcuts.

Theorem 7.11 (Generalization Theorem). Suppose x is a variable,
Γ is a set of formulas in which x does not occur free, and ϕ is a formula
such that Γ ` ϕ. Then Γ ` ∀xϕ.

Theorem 7.12 (Generalization On Constants). Suppose that c is a
constant symbol, Γ is a set of formulas in which c does not occur, and
ϕ is a formula such that Γ ` ϕ. Then there is a variable x which does
not occur in ϕ such that Γ ` ∀xϕcx.1 Moreover, there is a deduction of
∀xϕcx from Γ in which c does not occur.

Example 7.2. We’ll show that if ϕ and ψ are any formulas, x is
any variable, and ` ϕ→ ψ, then ` ∀xϕ→ ∀xψ.

Since x does not occur free in any formula of ∅, it follows from
` ϕ→ ψ by the Generalization Theorem that ` ∀x (ϕ→ ψ). But then

(1) ∀x (ϕ→ ψ) above
(2) ∀x (ϕ→ ψ)→ (∀xϕ→ ∀xψ) A5
(3) ∀xϕ→ ∀xψ 1,2 MP

is the tail end of a deduction of ∀xϕ→ ∀xψ from ∅.
Problem 7.13. Show that:

(1) ` ∀x∀y ∀z (x = y → (y = z → x = z)).
(2) ` ∀xα→ ∃xα.
(3) ` ∃x γ → ∀x γ if x does not occur free in γ.

We conclude with a bit of terminology.

Definition 7.7. If Σ is a set of sentences, then the theory of Σ is

Th(Σ) = { τ | τ is a sentence and Σ ` τ }.
That is, the theory of Σ is just the collection of all sentences which

can be proved from Σ.

1ϕcx is ϕ with every occurence of the constant c replaced by x.

CHAPTER 8

Soundness and Completeness

As with propositional logic, first-order logic had better satisfy the
Soundness Theorem and it is desirable that it satisfy the Completeness
Theorem. These theorems do hold for first-order logic. The Soundness
Theorem is proved in a way similar to its counterpart for propositional
logic, but the Completeness Theorem will require a fair bit of additional
work.1 It is in this extra work that the distinction between formulas
and sentences becomes useful.

Let L be a fixed countable first-order language throughout this
chapter. All formulas will be assumed to be formulas of L unless stated
otherwise.

First, we rehash many of the definitions and facts we proved for
propositional logic in Chapter 4 for first-order logic.

Theorem 8.1 (Soundness Theorem). If α is a sentence and ∆ is
a set of sentences such that ∆ ` α, then ∆ |= α.

Definition 8.1. A set of sentences Γ is inconsistent if Γ ` ¬(ψ →
ψ) for some formula ψ, and is consistent if it is not inconsistent.

Recall that a set of sentences Γ is satisfiable if M |= Γ for some
structure M.

Proposition 8.2. If a set of sentences Γ is satisfiable, then it is
consistent.

Proposition 8.3. Suppose ∆ is an inconsistent set of sentences.
Then ∆ ` ψ for any formula ψ.

Proposition 8.4. Suppose Σ is an inconsistent set of sentences.
Then there is a finite subset ∆ of Σ such that ∆ is inconsistent.

Corollary 8.5. A set of sentences Γ is consistent if and only if
every finite subset of Γ is consistent.

1This is not too surprising because of the greater complexity of first-order logic.
Also, it turns out that first-order logic is about as powerful as a logic can get and
still have the Completeness Theorem hold.

47

48 8. SOUNDNESS AND COMPLETENESS

Definition 8.2. A set of sentences Σ is maximally consistent if Σ
is consistent but Σ ∪ {τ} is inconsistent whenever τ is a sentence such
that τ /∈ Σ.

One quick way of finding examples of maximally consistent sets is
given by the following proposition.

Proposition 8.6. If M is a structure, then Th(M) is a maximally
consistent set of sentences.

Example 8.1. M = ({5}) is a structure for L=, so Th(M) is a
maximally consistent set of sentences. Since it turns out that Th(M) =
Th ({ ∀x∀y x = y }), this also gives us an example of a set of sentences
Σ = { ∀x∀y x = y } such that Th(Σ) is maximally consistent.

Proposition 8.7. If Σ is a maximally consistent set of sentences,
τ is a sentence, and Σ ` τ , then τ ∈ Σ.

Proposition 8.8. Suppose Σ is a maximally consistent set of sen-
tences and τ is a sentence. Then ¬τ ∈ Σ if and only if τ /∈ Σ.

Proposition 8.9. Suppose Σ is a maximally consistent set of sen-
tences and ϕ and ψ are any sentences. Then ϕ→ ψ ∈ Σ if and only if
ϕ /∈ Σ or ψ ∈ Σ.

Theorem 8.10. Suppose Γ is a consistent set of sentences. Then
there is a maximally consistent set of sentences Σ with Γ ⊆ Σ.

The counterparts of these notions and facts for propositional logic
sufficed to prove the Completeness Theorem, but here we will need
some additional tools. The basic problem is that instead of defining a
suitable truth assignment from a maximally consistent set of formulas,
we need to construct a suitable structure from a maximally consistent
set of sentences. Unfortunately, structures for first-order languages are
usually more complex than truth assignments for propositional logic.
The following definition supplies the key new idea we will use to prove
the Completeness Theorem.

Definition 8.3. Suppose Σ is a set of sentences and C is a set of
(some of the) constant symbols of L. Then C is a set of witnesses for
Σ in L if for every formula ϕ of L with at most one free variable x,
there is a constant symbol c ∈ C such that Σ ` ∃xϕ→ ϕxc .

The idea is that every element of the universe which Σ proves must
exist is named, or “witnessed”, by a constant symbol in C . Note that
if Σ ` ¬∃xϕ, then Σ ` ∃xϕ→ ϕxc for any constant symbol c.

8. SOUNDNESS AND COMPLETENESS 49

Proposition 8.11. Suppose Γ and Σ are sets of sentences of L,
Γ ⊆ Σ, and C is a set of witnesses for Γ in L. Then C is a set of
witnesses for Σ in L.

Example 8.2. Let L′O be the first-order language with a single 2-
place relation symbol, <, and countably many constant symbols, cq for
each q ∈ Q. Let Σ include all the sentences

(1) cp < cq, for every p, q ∈ Q such that p < q,
(2) ∀x (¬x < x),
(3) ∀x∀y (x < y ∨ x = y ∨ y < x),
(4) ∀x∀y ∀z (x < y → (y < z → x < z)),
(5) ∀x∀y (x < y → ∃z (x < z ∧ z < y)),
(6) ∀x∃y (x < y), and
(7) ∀x∃y (y < x).

In effect, Σ asserts that < is a linear order on the universe (2–4) which
is dense (5) and has no endpoints (6–7), and which has a suborder
isomorphic to Q (1). Then C = { cq | q ∈ Q } is a set of witnesses for
Σ in L′O.

In the example above, one can “reverse-engineer” a model for the set
of sentences in question from the set of witnesses simply by letting the
universe of the structure be the set of witnesses. One can also define the
necessary relation interpreting< in a pretty obvious way from Σ.2 This
example is obviously contrived: there are no constant symbols around
which are not witnesses, Σ proves that distinct constant symbols aren’t
equal to to each other, there is little by way of non-logical symbols
needing interpretation, and Σ explicitly includes everything we need to
know about <.

In general, trying to build a model for a set of sentences Σ in this
way runs into a number of problems. First, how do we know whether
Σ has a set of witnesses at all? Many first-order languages have few or
no constant symbols, after all. Second, if Σ has a set of witnesses C ,
it’s unlikely that we’ll be able to get away with just letting the universe
of the model be C . What if Σ ` c = d for some distinct witnesses c
and d? Third, how do we handle interpreting constant symbols which
are not in C? Fourth, what if Σ doesn’t prove enough about whatever
relation and function symbols exist to let us define interpretations of
them in the structure under construction? (Imagine, if you like, that
someone hands you a copy of Joyce’s Ulysses and asks you to produce a

2Note, however, that an isomorphic copy of Q is not the only structure for L′O
satisfying Σ. For example, R = (R, <, q+π : q ∈ Q) will also satisfy Σ if we intepret
cq by q + π.

50 8. SOUNDNESS AND COMPLETENESS

complete road map of Dublin on the basis of the book. Even if it has no
geographic contradictions, you are unlikely to find all the information
in the novel needed to do the job.) Finally, even if Σ does prove all we
need to define functions and relations on the universe to interpret the
function and relation symbols, just how do we do it? Getting around
all these difficulties requires a fair bit of work. One can get around
many by sticking to maximally consistent sets of sentences in suitable
languages.

Lemma 8.12. Suppose Σ is a set of sentences, ϕ is any formula,
and x is any variable. Then Σ ` ϕ if and only if Σ ` ∀xϕ.

Theorem 8.13. Suppose Γ is a consistent set of sentences of L. Let
C be an infinite countable set of constant symbols which are not symbols
of L, and let L′ = L∪C be the language obtained by adding the constant
symbols in C to the symbols of L. Then there is a maximally consistent
set Σ of sentences of L′ such that Γ ⊆ Σ and C is a set of witnesses
for Σ.

This theorem allows one to use a certain measure of brute force:
No set of witnesses? Just add one! The set of sentences doesn’t decide
enough? Decide everything one way or the other!

Theorem 8.14. Suppose Σ is a maximally consistent set of sen-
tences and C is a set of witnesses for Σ. Then there is a structure M

such that M |= Σ.

The important part here is to define M — proving that M |= Σ
is tedious but fairly straightforward if you have the right definition.
Proposition 6.17 now lets us deduce the fact we really need.

Corollary 8.15. Suppose Γ is a consistent set of sentences of a
first-order language L. Then there is a structure M for L satisfying Γ.

With the above facts in hand, we can rejoin our proof of Soundness
and Completeness, already in progress:

Theorem 8.16. A set of sentences Σ in L is consistent if and only
if it is satisfiable.

The rest works just like it did for propositional logic.

Theorem 8.17 (Completeness Theorem). If α is a sentence and ∆
is a set of sentences such that ∆ |= α, then ∆ ` α.

It follows that in a first-order logic, as in propositional logic, a
sentence is implied by some set of premisses if and only if it has a proof
from those premisses.

8. SOUNDNESS AND COMPLETENESS 51

Theorem 8.18 (Compactness Theorem). A set of sentences ∆ is
satisfiable if and only if every finite subset of ∆ is satisfiable.

CHAPTER 9

Applications of Compactness

After wading through the preceding chapters, it should be obvious
that first-order logic is, in principle, adequate for the job it was origi-
nally developed for: the essentially philosophical exercise of formalizing
most of mathematics. As something of a bonus, first-order logic can
supply useful tools for doing “real” mathematics. The Compactness
Theorem is the simplest of these tools and glimpses of two ways of
using it are provided below.

From the finite to the infinite. Perhaps the simplest use of the
Compactness Theorem is to show that if there exist arbitrarily large
finite objects of some type, then there must also be an infinite object
of this type.

Example 9.1. We will use the Compactness Theorem to show that
there is an infinite commutative group in which every element is of order
2, i.e. such that g · g = e for every element g.

Let LG be the first-order language with just two non-logical sym-
bols:

• Constant symbol: e
• 2-place function symbol: ·

Here e is intended to name the group’s identity element and · the group
operation. Let Σ be the set of sentences of LG including:

(1) The axioms for a commutative group:
• ∀xx · e = x
• ∀x∃y x · y = e
• ∀x∀y ∀z x · (y · z) = (x · y) · z
• ∀x∀y y · x = x · y

(2) A sentence which asserts that every element of the universe is
of order 2:
• ∀xx · x = e

(3) For each n ≥ 2, a sentence, σn, which asserts that there are at
least n different elements in the universe:
• ∃x1 . . . ∃xn ((¬x1 = x2)∧(¬x1 = x3)∧· · ·∧(¬xn−1 = xn))

53

54 9. APPLICATIONS OF COMPACTNESS

We claim that every finite subset of Σ is satisfiable. The most
direct way to verify this is to show how, given a finite subset ∆ of Σ,
to produce a model M of ∆. Let n be the largest integer such that
σn ∈ ∆∪{σ2} (Why is there such an n?) and choose an integer k such
that 2k ≥ n. Define a structure (G, ◦) for LG as follows:

• G = { 〈a` | 1 ≤ ` ≤ k〉 | a` = 0 or 1 }
• 〈a` | 1 ≤ ` ≤ k〉 ◦ 〈b` | 1 ≤ ` ≤ k〉 = 〈a` + b` (mod 2) | 1 ≤ ` ≤
k〉

That is, G is the set of binary sequences of length k and ◦ is coordi-
natewise addition modulo 2 of these sequences. It is easy to check that
(G, ◦) is a commutative group with 2k elements in which every element
has order 2. Hence (G, ◦) |= ∆, so ∆ is satisfiable.

Since every finite subset of Σ is satisfiable, it follows by the Com-
pactness Theorem that Σ is satisfiable. A model of Σ, however, must
be an infinite commutative group in which every element is of order
2. (To be sure, it is quite easy to build such a group directly; for ex-
ample, by using coordinatewise addition modulo 2 of infinite binary
sequences.)

Problem 9.1. Use the Compactness Theorem to show that there is
an infinite

(1) bipartite graph,
(2) non-commutative group, and
(3) field of characteristic 3,

and also give concrete examples of such objects.

Most applications of this method, including the ones above, are
not really interesting: it is usually more valuable, and often easier, to
directly construct examples of the infinite objects in question rather
than just show such must exist. Sometimes, though, the technique
can be used to obtain a non-trivial result more easily than by direct
methods. We’ll use it to prove an important result from graph theory,
Ramsey’s Theorem. Some definitions first:

Definition 9.1. If X is a set, let the set of unordered pairs of
elements of X be [X]2 = { {a, b} | a, b ∈ X and a 6= b }. (See Defini-
tion A.1.)

(1) A graph is a pair (V,E) such that V is a non-empty set and
E ⊆ [V]2. Elements of V are called vertices of the graph and
elements of E are called edges.

(2) A subgraph of (V,E) is a pair (U, F), where U ⊂ V and F =
E ∩ [U]2.

9. APPLICATIONS OF COMPACTNESS 55

(3) A subgraph (U, F) of (V,E) is a clique if F = [U]2.
(4) A subgraph (U, F) of (V,E) is an independent set if F = ∅.

That is, a graph is some collection of vertices, some of which are
joined to one another. A subgraph is just a subset of the vertices,
together with all edges joining vertices of this subset in the whole graph.
It is a clique if it happens that the original graph joined every vertex in
the subgraph to all other vertices in the subgraph, and an independent
set if it happens that the original graph joined none of the vertices in
the subgraph to each other. The question of when a graph must have
a clique or independent set of a given size is of some interest in many
applications, especially in dealing with colouring problems.

Theorem 9.2 (Ramsey’s Theorem). For every n ≥ 1 there is an
integer Rn such that any graph with at least Rn vertices has a clique
with n vertices or an independent set with n vertices.

Rn is the nth Ramsey number . It is easy to see that R1 = 1 and
R2 = 2, but R3 is already 6, and Rn grows very quickly as a function
of n thereafter. Ramsey’s Theorem is fairly hard to prove directly, but
the corresponding result for infinite graphs is comparatively straight-
forward.

Lemma 9.3. If (V,E) is a graph with infinitely many vertices, then
it has an infinite clique or an infinite independent set.

A relatively quick way to prove Ramsey’s Theorem is to first prove
its infinite counterpart, Lemma 9.3, and then get Ramsey’s Theorem
out of it by way of the Compactness Theorem. (If you’re an ambitious
minimalist, you can try to do this using the Compactness Theorem for
propositional logic instead!)

Elementary equivalence and non-standard models. One of
the common uses for the Compactness Theorem is to construct “non-
standard” models of the theories satisfied by various standard math-
ematical structures. Such a model satisfies all the same first-order
sentences as the standard model, but differs from it in some way not
expressible in the first-order language in question. This brings home
one of the intrinsic limitations of first-order logic: it can’t always tell
essentially different structures apart. Of course, we need to define just
what constitutes essential difference.

Definition 9.2. Suppose L is a first-order language and N and M

are two structures for L. Then N and M are:

(1) isomorphic, written as N ∼= M, if there is a function F : |N| →
|M| such that

56 9. APPLICATIONS OF COMPACTNESS

(a) F is 1− 1 and onto,
(b) F (cN) = cM for every constant symbol c of L,
(c) F (fN(a1, . . . , ak) = fM(F (a1), . . . , F (ak)) for every k-place

function symbol f of L and elements a1, . . . , ak ∈ |N|, and
(d) PN(a1, . . . , ak) holds if and only if PN(F (a1), . . . , F (ak))

for every k-place relation symbol of L and elements a1,
. . . , ak of |N|;

and
(2) elementarily equivalent , written as N ≡M, if Th(N) = Th(M),

i.e. if N |= σ if and only if M |= σ for every sentence σ of L.

That is, two structures for a given language are isomorphic if they
are structurally identical and elementarily equivalent if no statement
in the language can distinguish between them. Isomorphic structures
are elementarily equivalent:

Proposition 9.4. Suppose L is a first-order language and N and
M are structures for L such that N ∼= M. Then N ≡M.

However, as the following application of the Compactness Theorem
shows, elementarily equivalent structures need not be isomorphic:

Example 9.2. Note that C = (N) is an infinite structure for L=.
Expand L= to LR by adding a constant symbol cr for every real number
r, and let Σ be the set of sentences of L= including

• every sentence τ of Th(C), i.e. such that C |= τ , and
• ¬cr = cs for every pair of real numbers r and s such that r 6= s.

Every finite subset of Σ is satisfiable. (Why?) Thus, by the Compact-
ness Theorem, there is a structure U′ for LR satisfying Σ, and hence
Th(C). The structure U obtained by dropping the interpretations of
all the constant symbols cr from U′ is then a structure for L= which
satisfies Th(C). Note that |U| = |U′| is at least large as the set of all
real numbers R, since U′ requires a distinct element of the universe to
interpret each constant symbol cr of LR.

Since Th(C) is a maximally consistent set of sentences of L= by
Problem 8.6, it follows from the above that C ≡ U. On the other hand,
C cannot be isomorphic to U because there cannot be an onto map
between a countable set, such as N = |C|, and a set which is at least
as large as R, such as |U|.

In general, the method used above can be used to show that if a
set of sentences in a first-order language has an infinite model, it has
many different ones. In L= that is essentially all that can happen:

9. APPLICATIONS OF COMPACTNESS 57

Proposition 9.5. Two structures for L= are elementarily equiva-
lent if and only if they are isomorphic or infinite.

Problem 9.6. Let N = (N, 0, 1, S,+, ·, E) be the standard structure
for LN . Use the Compactness Theorem to show there is a structure M

for LN such that N ≡ N but not N ∼= M.

Note that because N and M both satisfy Th(N), which is maximally
consistent by Problem 8.6, there is absolutely no way of telling them
apart in LN .

Proposition 9.7. Every model of Th(N) which is not isomorphic
to N has

(1) an isomorphic copy of N embedded in it,
(2) an infinite number, i.e. one larger than all of those in the copy

of N, and
(3) an infinite decreasing sequence.

The apparent limitation of first-order logic that non-isomorphic
structures may be elementarily equivalent can actually be useful. A
non-standard model may have features that make it easier to work
with than the standard model one is really interested in. Since both
structures satisfy exactly the same sentences, if one uses these features
to prove that some statement expressible in the given first-order lan-
guage is true about the non-standard structure, one gets for free that
it must be true of the standard structure as well. A prime example of
this idea is the use of non-standard models of the real numbers con-
taining infinitesimals (numbers which are infinitely small but different
from zero) in some areas of analysis.

Theorem 9.8. Let R = (R, 0, 1,+, ·) be the field of real numbers,
considered as a structure for LF . Then there is a model of Th(R) which
contains a copy of R and in which there is an infinitesimal.

The non-standard models of the real numbers actually used in anal-
ysis are usually obtained in more sophisticated ways in order to have
more information about their internal structure. It is interesting to
note that infinitesimals were the intuition behind calculus for Leibniz
when it was first invented, but no one was able to put their use on a
rigourous footing until Abraham Robinson did so in 1950.

Hints for Chapters 5–9

Hints for Chapter 5.

5.1. Try to disassemble each string using Definition 5.2. Note that
some might be valid terms of more than one of the given languages.

5.2. This is similar to Problem 1.5.

5.3. This is similar to Proposition 1.7.

5.4. Try to disassemble each string using Definitions 5.2 and 5.3.
Note that some might be valid formulas of more than one of the given
languages.

5.5. This is just like Problem 1.2.

5.6. This is similar to Problem 1.5. You may wish to use your
solution to Problem 5.2.

5.7. This is similar to Proposition 1.7.

5.8. You might want to rephrase some of the given statements to
make them easier to formalize.

(1) Look up associativity if you need to.
(2) “There is an object such that every object is not in it.”
(3) This should be easy.
(4) Ditto.
(5) “Any two things must be the same thing.”

5.9. If necessary, don’t hesitate to look up the definitions of the
given structures.

(1) Read the discussion at the beginning of the chapter.
(2) You really need only one non-logical symbol.
(3) There are two sorts of objects in a vector space, the vectors

themselves and the scalars of the field, which you need to be
able to tell apart.

5.10. Use Definition 5.3 in the same way that Definition 1.2 was
used in Definition 1.3.

59

60 HINTS FOR CHAPTERS 5–9

5.11. The scope of a quantifier ought to be a certain subformula of
the formula in which the quantifier occurs.

5.12. Check to see whether they satisfy Definition 5.4.

5.13. Check to see which pairs satisfy Definition 5.5.

5.14. Proceed by induction on the length of ϕ using Definition 5.3.

5.15. This is similar to Theorem 1.12.

5.16. This is similar to Theorem 1.12 and uses Theorem 5.15.

Hints for Chapter 6.

6.1. In each case, apply Definition 6.1.

(1) This should be easy.
(2) Ditto.
(3) Invent objects which are completely different except that they

happen to have the right number of the right kind of compo-
nents.

6.2. Figure out the relevant values of s(vn) and apply Definition
6.3.

6.3. Suppose s and r both extend the assignment s. Show that
s(t) = r(t) by induction on the length of the term t.

6.4. Unwind the formulas using Definition 6.4 to get informal state-
ments whose truth you can determine.

6.5. Unwind the abbreviation ∃ and use Definition 6.4.

6.6. Unwind each of the formulas using Definitions 6.4 and 6.5 to
get informal statements whose truth you can determine.

6.7. This is much like Proposition 6.3.

6.8. Proceed by induction on the length of the formula using Defi-
nition 6.4 and Lemma 6.7.

6.9. How many free variables does a sentence have?

6.10. Use Definition 6.4.

6.12. Unwind the sentences in question using Definition 6.4.

6.11. Use Definitions 6.4 and 6.5; the proof is similar in form to
the proof of Proposition 2.9.

6.14. Use Definitions 6.4 and 6.5; the proof is similar in form to
the proof for Problem 2.10.

HINTS FOR CHAPTERS 5–9 61

6.15. Use Definitions 6.4 and 6.5 in each case, plus the meanings
of our abbreviations.

6.17. In one direction, you need to add appropriate objects to a
structure; in the other, delete them. In both cases, you still have to
verify that Γ is still satisfied.

6.18. Here are some appropriate languages.

(1) L=

(2) Modify your language for graph theory from Problem 5.9 by
adding a 1-place relation symbol.

(3) Use your language for group theory from Problem 5.9.
(4) LF

Hints for Chapter 7.

7.1. (1) Use Definition 7.1.
(2) Ditto.
(3) Ditto.
(4) Proceed by induction on the length of the formula ϕ.

7.2. Use the definitions and facts about |= from Chapter 6.

7.3. Check each case against the schema in Definition 7.4. Don’t
forget that any generalization of a logical axiom is also a logical axiom.

7.4. You need to show that any instance of the schemas A1–A8 is
a tautology and then apply Lemma 7.2. That each instance of schemas
A1–A3 is a tautology follows from Proposition 6.15. For A4–A8 you’ll
have to use the definitions and facts about |= from Chapter 6.

7.5. You may wish to appeal to the deductions that you made or
were given in Chapter 3.

(1) Try using A4 and A6.
(2) You don’t need A4–A8 here.
(3) Try using A4 and A8.
(4) A8 is the key; you may need it more than once.
(5) This is just A6 in disguise.

7.6. This is just like its counterpart for propositional logic.

7.7. Ditto.

7.8. Ditto.

7.9. Ditto.

7.10. Ditto.

62 HINTS FOR CHAPTERS 5–9

7.11. Proceed by induction on the length of the shortest proof of
ϕ from Γ.

7.12. Ditto.

7.13. As usual, don’t take the following suggestions as gospel.

(1) Try using A8.
(2) Start with Example 7.1.
(3) Start with part of Problem 7.5.

Hints for Chapter 8.

8.1. This is similar to the proof of the Soundness Theorem for
propositional logic, using Proposition 6.10 in place of Proposition 3.2.

8.2. This is similar to its counterpart for prpositional logic, Propo-
sition 4.2. Use Proposition 6.10 instead of Proposition 3.2.

8.3. This is just like its counterpart for propositional logic.

8.4. Ditto.

8.5. Ditto.

8.6. This is a counterpart to Problem 4.6; use Proposition 8.2 in-
stead of Proposition 4.2 and Proposition 6.15 instead of Proposition
2.4.

8.7. This is just like its counterpart for propositional logic.

8.8. Ditto

8.9. Ditto.

8.10. This is much like its counterpart for propositional logic, The-
orem 4.10.

8.11. Use Proposition 7.8.

8.12. Use the Generalization Theorem for the hard direction.

8.13. This is essentially a souped-up version of Theorem 8.10. To
ensure that C is a set of witnesses of the maximally consistent set of
sentences, enumerate all the formulas ϕ of L′ with one free variable
and take care of one at each step in the inductive construction.

HINTS FOR CHAPTERS 5–9 63

8.14. To construct the required structure, M, proceed as follows.
Define an equivalence relation ∼ on C by setting c ∼ d if and only if
c = d ∈ Σ, and let [c] = { a ∈ C | a ∼ c } be the equivalence class of
c ∈ C . The universe of M will be M = { [c] | c ∈ C }. For each k-place
function symbol f define fM by setting fM([a1], . . . , [ak]) = [b] if and
only if fa1 . . . ak = b is in Σ. Define the interpretations of constant
symbols and relation symbols in a similar way. You need to show that
all these things are well-defined, and then show that M |= Σ.

8.15. Expand Γ to a maximally consistent set of sentences with a
set of witnesses in a suitable extension of L, apply Theorem 8.14, and
then cut down the resulting structure to one for L.

8.16. One direction is just Proposition 8.2. For the other, use
Corollary 8.15.

8.17. This follows from Theorem 8.16 in the same way that the
Completeness Theorem for propositional logic followed from Theorem
4.11.

8.18. This follows from Theorem 8.16 in the same way that the
Compactness Theorem for propositional logic followed from Theorem
4.11.

Hints for Chapter 9.

9.1. In each case, apply the trick used in Example 9.1. For defi-
nitions and the concrete examples, consult texts on combinatorics and
abstract algebra.

9.2. Suppose Ramsey’s Theorem fails for some n. Use the Com-
pactness Theorem to get a contradiction to Lemma 9.3 by showing
there must be an infnite graph with no clique or independent set of
size n.

9.3. Inductively define a sequence a0, a1, . . . , of vertices so that for
every n, either it is the case that for all k ≥ n there is an edge joining
an to ak or it is the case that for all k ≥ n there is no edge joining an
to ak. There will then be a subsequence of the sequence which is an
infinite clique or a subsequence which is an infinite independent set.

9.4. The key is to figure out how, given an assignment for one
structure, one should define the corresponding assignment in the other
structure. After that, proceed by induction using the definition of
satisfaction.

9.5. When are two finite structures for L= elementarily equivalent?

64 HINTS FOR CHAPTERS 5–9

9.6. In a suitable expanded language, consider Th(N) together with
the sentences ∃x 0 + x = c, ∃xS0 + x = c, ∃xSS0 + x = c, . . .

9.7. Suppose M |= Th(N) but is not isomorphic to N.

(1) Consider the subset of |M| given by 0M, SM(0M), SM(SM(0M)),
. . .

(2) If it didn’t have one, it would be a copy of N.
(3) Start with a infinite number and work down.

9.8. Expand LF by throwing in a constant symbol for every real
number, plus an extra one, and take it from there.

Part III

Computability

CHAPTER 10

Turing Machines

Of the various ways to formalize the notion an “effective method”,
the most commonly used are the simple abstract computers called Tur-
ing machines, which were introduced more or less simultaneously by
Alan Turing and Emil Post in 1936.1 Like most real-life digital com-
puters, Turing machines have two main parts, a processing unit and
a memory (which doubles as the input/output device), which we will
consider separately before seeing how they interact. The memory can
be thought of as an infinite tape which is divided up into cells like the
frames of a movie. The Turing machine proper is the processing unit.
It has a scanner or head which can read from or write to a single cell
of the tape, and which can be moved to the left or right one cell at a
time.

Tapes. To keep things simple, in this chapter we will only allow
Turing machines to read and write the symbols 0 and 1. (One symbol
per cell!) Moreover, we will allow the tape to be infinite in only one
direction. That these restrictions do not affect what a Turing machine
can, in principle, compute follows from the results in the next chapter.

Definition 10.1. A tape is an infinite sequence

a = a0 a1 a2 a3 . . .

such that for each integer i the cell ai ∈ {0, 1}. The ith cell is said to
be blank if ai is 0, and marked if ai is 1.

A blank tape is one in which every cell is 0.

Example 10.1. A blank tape looks like:

000000000000000000000000 · · ·
The 0th cell is the leftmost one, cell 1 is the one immediately to the
right, cell 2 is the one immediately to the right of cell 1, and so on.

The following is a slightly more exciting tape:

0101101110001000000000000000 · · ·
1Both papers are reprinted in [6]. Post’s brief paper gives a particularly lucid

informal description.

67

68 10. TURING MACHINES

In this case, cell 1 is marked (i.e. contains a 1), as do cells 3, 4, 5, 7,
8, and 12; all the rest are blank (i.e. contain a 0).

Problem 10.1. Write down tapes satisfying the following.

(1) Entirely blank except for cells 3, 12, and 20.
(2) Entirely marked except for cells 0, 2, and 3.
(3) Entirely blank except that 1025 is written out in binary just to

the right of cell 2.

To keep track of which cell the Turing machine’s scanner is at, plus
which instruction the Turing machine is to execute next, we will usually
attach additional information to our description of the tape.

Definition 10.2. A tape position is a triple (s, i, a), where s and i
are natural numbers with s > 0, and a is a tape. Given a tape position
(s, i, a), we will refer to cell i as the scanned cell and to s as the state.

Note that if (s, i, a) is a tape position, then the corresponding Tur-
ing machine’s scanner is presently reading ai (which is one of 0 or 1).

Conventions for tapes. Unless stated otherwise, we will assume
that all but finitely many cells of any given tape are blank, and that any
cells not explicitly described or displayed are blank. We will usually
depict as little of a tape as possible and omit the · · · s we used above.
Thus

0101101110001

represents the tape given in the Example 10.1. In many cases we will
also use zn to abbreviate n consecutive copies of z, so the same tape
could be represented by

01012013031 .

Similarly, if σ is a finite sequence of elements of {0, 1}, we may write σn

for the sequence consisting of n copies of σ stuck together end-to-end.
For example, (010)3 is short for 010010010.

In displaying tape positions we will usually underline the scanned
cell and write s to the left of the tape. For example, we would display
the tape position using the tape from Example 10.1 with cell 3 being
scanned and state 2 as follows:

2 : 0101101110001

Note that in this example, the scanner is reading a 1.

Problem 10.2. Using the tapes you gave in the corresponding part
of Problem 10.1, write down tape positions satisfying the following con-
ditions.

10. TURING MACHINES 69

(1) Cell 7 being scanned and state 4.
(2) Cell 4 being scanned and state 3.
(3) Cell 3 being scanned and state 413.

Turing machines. The “processing unit” of a Turing machine is
just a finite list of specifications describing what the machine will do in
various situations. (Remember, this is an abstract computer. . .) The
formal definition may not seem to amount to this at first glance.

Definition 10.3. A Turing machine is a function M such that for
some natural number n,

dom(M) ⊆ {1, . . . , n} × {0, 1}
= { (s, b) | 1 ≤ s ≤ n and b ∈ {0, 1} }

and

ran(M) ⊆ {0, 1} × {−1, 1} × {1, . . . , n}
= { (c, d, t) | c ∈ {0, 1} and d ∈ {−1, 1} and 1 ≤ t ≤ n } .

Note that M does not have to be defined for all possible pairs

(s, b) ∈ {1, . . . , n} × {0, 1} .

We will sometimes refer to a Turing machine simply as a machine
or TM . If n ≥ 1 is least such that M satisfies the definition above, we
shall say that M is an n-state Turing machine and that {1, . . . , n} is
the set of states of M .

Intuitively, we have a processing unit which has a finite list of basic
instructions, the states, which it can execute. Given a combination of
current state and the symbol marked in the currently scanned cell of
the tape, the list specifies

• a symbol to be written in the currently scanned cell, overwrit-
ing the symbol being read, then
• a move of the scanner one cell to the left or right, and then
• the next instruction to be executed.

That is, M(s, c) = (b, d, t) means that if our machine is in state s (i.e.
executing instruction number s) and the scanner is presently reading a
c in cell i, then the machine M should

• set ai = b (i.e. write b instead of c in the scanned cell), then
• move the scanner to ai+d (i.e. move one cell left if d = −1 and

one cell right if d = 1), and then
• enter state t (i.e. go to instruction t).

70 10. TURING MACHINES

If our processor isn’t equipped to handle input c for instruction s (i.e.
M(s, c) is undefined), then the computation in progress will simply
stop dead or halt .

Example 10.2. We will usually present Turing machines in the
form of a table, with a row for each state and a column for each possible
entry in the scanned cell. Instead of −1 and 1, we will usually use L
and R when writing such tables in order to make them more readable.
Thus the table

M 0 1
1 1R2 0R1
2 0L2

defines a Turing machine M with two states such that M(1, 0) =
(1, 1, 2), M(1, 1) = (0, 1, 1), and M(2, 0) = (0,−1, 2), but M(2, 1) is
undefined. In this case M has domain { (1, 0), (1, 1), (2, 0) } and range
{ (1, 1, 2), (0, 1, 1), (0,−1, 2) }. If the machine M were faced with the
tape position

1: 01001111 ,

it would, since it was in state 1 while scanning a cell containing 0,

• write a 1 in the scanned cell,
• move the scanner one cell to the right, and
• go to state 2.

This would give the new tape position

2: 01011111 .

Since M doesn’t know what to do on input 1 in state 2, it would then
halt, ending the computation.

Problem 10.3. In each case, give the table of a Turing machine
M meeting the given requirement.

(1) M has three states.
(2) M changes 0 to 1 and vice versa in any cell it scans.
(3) M is as simple as possible. How many possibilities are there

here?

Computations. Informally, a computation is a sequence of actions
of a machine M on a tape according to the rules above, starting with
instruction 1 and the scanner at cell 0 on the given tape. A computation
ends (or halts) when and if the machine encounters a tape position
which it does not know what to do in If it never halts, and doesn’t
crash by running the scanner off the left end of the tape2 either, the

2Be warned that most authors prefer to treat running the scanner off the left
end of the tape as being just another way of halting. Halting with the scanner

10. TURING MACHINES 71

computation will never end. The formal definition makes all this seem
much more formidable.

Definition 10.4. Suppose M is a Turing machine. Then:

• If p = (s, i, a) is a tape position and M(s, ai) = (b, d, t) is
defined, then M(p) = (t, i+d, a′) is the successor tape position,
where a′i = b and a′j = aj whenever j 6= i.
• A partial computation with respect to M is a sequence p1p2 . . .

of tape positions such that p`+1 = M(p`) for each ` < k.
• A partial computation p1p2 . . . pk with respect to M is a com-

putation (with respect to M) with input tape a if p1 = (1, 0, a)
and M(pk) is undefined (and not because the scanner would
run off the end of the tape). The output tape of the computa-
tion is the tape of the final tape position pk.

Note that a partial computation is a computation only if the Turing
machine halts but doesn’t crash in the final tape position. The require-
ment that it halt means that any computation can have only finitely
many steps. Unless stated otherwise, we will assume that every partial
computation on a given input begins in state 1. We will often omit
the “partial” when speaking of computations that might not strictly
satisfy the definition of computation.

Example 10.3. Let’s see the machine M of Example 10.2 perform
a computation. Our input tape will be a = 1100, that is, the tape
which is entirely blank except that a0 = a1 = 1. The initial tape
position of the computation of M with input tape a is:

1 : 1100

The subsequent steps in the computation are:

1 : 0100

1: 0000

2: 0010

2: 001

We leave it to the reader to check that this is indeed a partial com-
putation with respect to M . Since M(2, 1) is undefined the process
terminates at this point and this partial computation is therefore a
computation.

on the tape is more convenient, however, when putting together different Turing
machines to make more complex ones.

72 10. TURING MACHINES

Problem 10.4. Give the (partial) computation of the Turing ma-
chine M of Example 10.2 starting in state 1 with the input tape:

(1) 00
(2) 110
(3) The tape with all cells marked and cell 5 being scanned.

Problem 10.5. For which possible input tapes does the partial com-
putation of the Turing machine M of Example 10.2 eventually termi-
nate? Explain why.

Problem 10.6. Find a Turing machine that (eventually!) fills a
blank input tape with the pattern 010110001011000101100

Problem 10.7. Find a Turing machine that never halts (or crashes),
no matter what is on the tape.

Building Turing Machines. It will be useful later on to have a
library of Turing machines that manipulate blocks of 1s in various ways,
and very useful to be able to combine machines peforming simpler tasks
to perform more complex ones.

Example 10.4. The Turing machine S given below is intended to
halt with output 01k0 on input 01k, if k > 0; that is, it just moves past
a single block of 1s without disturbing it.

S 0 1
1 0R2
2 1R2

Trace this machine’s computation on, say, input 013 to see how it works.
The following machine, which is itself a variation on S, does the

reverse of what S does: on input 01k0 it halts with output 01k.

T 0 1
1 0L2
2 1L2

We can combine S and T into a machine U which does nothing to
a block of 1s: given input 01k it halts with output 01k. (Of course, a
better way to do nothing is to really do nothing!)

T 0 1
1 0R2
2 0L3 1R2
3 1L3

Note how the states of T had to be renumbered to make the combina-
tion work.

10. TURING MACHINES 73

Example 10.5. The Turing machine P given below is intended to
move a block of 1s: on input 00n1k, where n ≥ 0 and k > 0, it halts
with output 01k.

P 0 1
1 0R2
2 1R3 1L8
3 0R3 0R4
4 0R7 1L5
5 0L5 1R6
6 1R3
7 0L7 1L8
8 1L8

Trace P ’s computation on, say, input 00313 to see how it works. Trace
it on inputs 012 and 0021 as well to see how it handles certain special
cases.

Note. In both Examples 10.4 and 10.5 we do not really care what
the given machines do on other inputs, so long as they perform as
intended on the particular inputs we are concerned with.

Problem 10.8. We can combine the machine P of Example 10.5
with the machines S and T of Example 10.4 to get the following ma-
chine.

R 0 1
1 0R2
2 0R3 1R2
3 1R4 1L9
4 0R4 0R5
5 0R8 1L6
6 0L6 1R7
7 1R4
8 0L8 1L9
9 0L10 1L9
10 1L10

What task involving blocks of 1s is this machine intended to perform?

Problem 10.9. In each case, devise a Turing machine that:

(1) Halts with output 014 on input 0.
(2) Halts with output 01n0 on input 00n1.
(3) Halts with output 012n on input 01n.
(4) Halts with output 0(10)n on input 01n.
(5) Halts with output 01m on input 01n01m whenever n,m > 0.

74 10. TURING MACHINES

(6) Halts with output 01m01n01k on input 01n01k01m, if n,m, k >
0.

(7) Halts with output 01m01n01k01m01n01k on input 01m01n01k,
if n,m, k > 0.

(8) On input 01m01n, where m,n > 0, halts with output 01 if
m 6= n and output 011 if m = n.

It doesn’t matter what the machine you define in each case may do on
other inputs, so long as it does the right thing on the given one(s).

CHAPTER 11

Variations and Simulations

The definition of a Turing machine given in Chapter 10 is arbitrary
in a number of ways, among them the use of the symbols 0 and 1, a
single read-write scanner, and a single one-way infinite tape. One could
further restrict the definition we gave by allowing

• the machine to move the scanner only to one of left or right in
each state,

or expand it by allowing the use of

• any finite alphabet of at least two symbols,
• separate read and write heads,
• multiple heads,
• two-way infinite tapes,
• multiple tapes,
• two- and higher-dimensional tapes,

or various combinations of these, among many other possibilities. We
will construct a number of Turing machines that simulate others with
additional features; this will show that various of the modifications
mentioned above really change what the machines can compute. (In
fact, none of them turn out to do so.)

Example 11.1. Consider the following Turing machine:

M 0 1
1 1R2 0L1
2 0L2 1L1

Note that in state 1, this machine may move the scanner to ei-
ther the left or the right, depending on the contents of the cell being
scanned. We will construct a Turing machine using the same alpha-
bet that emulates the action of M on any input, but which moves the
scanner to only one of left or right in each state. There is no problem
with state 2 of M , by the way, because in state 2 M always moves the
scanner to the left.

The basic idea is to add some states to M which replace part of the
description of state 1.

75

76 11. VARIATIONS AND SIMULATIONS

M ′ 0 1
1 1R2 0R3
2 0L2 1L1
3 0L4 1L4
4 0L1

This machine is just like M except that in state 1 with input 1,
instead of moving the scanner to the left and going to state 1, the
machine moves the scanner to the right and goes to the new state 3.
States 3 and 4 do nothing between them except move the scanner two
cells to the left without changing the tape, thus putting it where M
would have put it, and then entering state 1, as M would have.

Problem 11.1. Compare the computations of the machines M and
M ′ of Example 11.1 on the input tapes

(1) 0
(2) 011

and explain why is it not necessary to define M ′ for state 4 on input 1.

Problem 11.2. Explain in detail how, given an arbitrary Turing
machine M , one can construct a machine M ′ that simulates what M
does on any input, but which moves the scanner only to one of left or
right in each state.

It should be obvious that the converse, simulating a Turing machine
that moves the scanner only to one of left or right in each state by an
ordinary Turing machine, is easy to the point of being trivial.

It is often very convenient to add additional symbols to the alphabet
that Turing machines are permitted to use. For example, one might
want to have special symbols to use as place markers in the course of
a computation. (For a more spectacular application, see Example 11.3
below.) It is conventional to include 0, the “blank” symbol, in an
alphabet used by a Turing machine, but otherwise any finite set of
symbols goes.

Problem 11.3. How do you need to change Definitions 10.1 and
10.3 to define Turing machines using a finite alphabet Σ?

While allowing arbitary alphabets is often convenient when design-
ing a machine to perform some task, it doesn’t actually change what
can, in principle, be computed.

Example 11.2. Consider the machine W below which uses the
alphabet {0, x, y, z}.

W 0 x y z
1 0R1 xR1 0L2 zR1

11. VARIATIONS AND SIMULATIONS 77

For example, on input 0xzyxy, W will eventually halt with output
0xz0xy. Note that state 2 of W is used only to halt, so we don’t bother
to make a row for it on the table.

To simulate W with a machine Z using the alphabet {0, 1}, we first
have to decide how to represent W ’s tape. We will use the following
scheme, arbitrarily chosen among a number of alternatives. Every cell
of W ’s tape will be represented by two consecutive cells of Z’s tape,
with a 0 on W ’s tape being stored as 00 on Z’s, an x as 01, a y as 10,
and a z as 11. Thus, if W had input tape 0xzyxy, the corresponding
input tape for Z would be 000111100110.

Designing the machine Z that simulates the action of W on the
representation of W ’s tape is a little tricky. In the example below,
each state of W corresponds to a “subroutine” of states of Z which
between them read the information in each representation of a cell of
W ’s tape and take appropriate action.

Z 0 1
1 0R2 1R3
2 0L4 1L6
3 0L8 1L13
4 0R5
5 0R1
6 0R7
7 1R1
8 0R9
9 0L10
10 0L11
11 0L12 1L12
12 0L15 1L15
13 1R14
14 1R1

States 1–3 of Z read the input for state 1 of W and then pass on control
to subroutines handling each entry for state 1 in W ’s table. Thus states
4–5 of Z take action for state 1 of W on input 0, states 6–7 of Z take
action for state 1 of W on input x, states 8–12 of Z take action for
state 1 of W on input y, and states 13–14 take action for state 1 of W
on input z. State 15 of Z does what state 2 of W does: nothing but
halt.

Problem 11.4. Trace the (partial) computations of W , and their
counterparts for Z, for the input 0xzyxy for W . Why is the subroutine
for state 1 of W on input y so much longer than the others? How much
can you simplify it?

78 11. VARIATIONS AND SIMULATIONS

Problem 11.5. Given a Turing machine M with an arbitrary al-
phabet Σ, explain in detail how to construct a machine N with alphabet
{0, 1} that simulates M .

Doing the converse of this problem, simulating a Turing machine
with alphabet {0, 1} by one using an arbitrary alphabet, is pretty easy.

To define Turing machines with two-way infinite tapes we need only
change Definition 10.1: instead of having tapes a = a0a1a2 . . . indexed
by N, we let them be b = . . . b−2b−1b0b1b2 . . . indexed by Z. In defining
computations for machines with two-way infinite tapes, we adopt the
same conventions that we did for machines with one-way infinite tapes,
such as having the scanner start off scanning cell 0 on the input tape.
The only real difference is that a machine with a two-way infinite tape
cannot crash by running off the left end of the tape; it can only stop
by halting.

Example 11.3. Consider the following two-way infinite tape Turing
machine with alphabet {0, 1}:

T 0 1
1 1L1 0R2
2 0R2 1L1

To emulate T with a Turing machine O that has a one-way infinite
tape, we need to decide how to represent a two-way infinite tape on a
one-way infinite tape. This is easier to do if we allow ourselves to use
an alphabet for O other than {0, 1}, chosen with malice aforethought:

{ 0
S
, 1

S
, 0

0
, 0

1
, 1

0
, 1

1
}

We can now represent the tape a = . . . a−2a−1a0a1a2 . . . for T by the
tape a′ = a0

S
a1
a−1

a2
a−2

. . . for O. In effect, this trick allows us to split O’s

tape into two tracks, each of which accomodates half of the tape of T .
To define O, we split each state of T into a pair of states for O,

one for the lower track and one for the upper track. One must take
care to keep various details straight: when O changes a “cell” on one
track, it should not change the corresponding “cell” on the other track;
directions are reversed on the lower track; one has to “turn a corner”
moving past cell 0; and so on.

O 0 0
S

0
0

0
1

1
S

1
0

1
1

1 1
0
L1 1

S
R3 1

0
L1 1

1
L1 0

S
R2 0

0
R2 0

1
R2

2 0
0
R2 0

S
R2 0

0
R2 0

1
R2 1

S
R3 1

0
L1 1

1
L1

3 0
1
R3 1

S
R3 0

1
R3 0

0
L4 0

S
R2 1

1
R3 1

0
L4

4 0
0
L4 0

S
R2 0

0
L4 0

1
R3 1

S
R3 1

0
L4 1

1
R3

11. VARIATIONS AND SIMULATIONS 79

States 1 and 3 are the upper- and lower-track versions, respectively,
of T ’s state 1; states 2 and 4 are the upper- and lower-track versions,
respectively, of T ’s state 2. We leave it to the reader to check that O
actually does simulate T . . .

Problem 11.6. Trace the (partial) computations of T , and their
counterparts for O, for each of the following input tapes for T :

(1) 0 (i.e. a blank tape)
(2) 10
(3) . . . 1111111 . . . (i.e. every cell marked with 1)

Problem 11.7. Explain in detail how, given a Turing machine N
with alphabet Σ and a two-way infinite tape, one can construct a Turing
machine P with an one-way infinite tape that simulates N .

Problem 11.8. Explain in detail how, given a Turing machine P
with alphabet Σ and an one-way infinite tape, one can construct a Tur-
ing machine N with a two-way infinite tape that simulates P .

Combining the techniques we’ve used so far, we could simulate any
Turing machine with a two-way infinite tape and arbitrary alphabet by
a Turing machine with a one-way infinite tape and alphabet {0, 1}.

Problem 11.9. Give a precise definition for Turing machines with
two tapes. Explain how, given any such machine, one could construct
a single-tape machine to simulate it.

Problem 11.10. Give a precise definition for Turing machines with
two-dimensional tapes. Explain how, given any such machine, one
could construct a single-tape machine to simulate it.

These results, and others like them, imply that none of the variant
types of Turing machines mentioned at the start of this chapter differ
essentially in what they can, in principle, compute.

In Chapter 14 we will construct a Turing machine that can simulate
any (standard) Turing machine.

CHAPTER 12

Computable and Non-Computable Functions

A lot of computational problems in the real world have to do with
doing arithmetic, and any notion of computation that can’t deal with
arithmetic is unlikely to be of great use.

Notation and conventions. To keep things as simple as pos-
sible, we will stick to computations involving the natural numbers ,
i.e. the non-negative integers, the set of which is usually denoted by
N = { 0, 1, 2, . . . }.. The set of all k-tuples (n1, . . . , nk) of natural num-
bers is denoted by Nk. For all practical purposes, we may take N1 to
be N by identifying the 1-tuple (n) with the natural number n.

For k ≥ 1, f is a k-place function (from the natural numbers to the
natural numbers), often written as f : Nk → N, if it associates a value,
f(n1, . . . , nk), to each k-tuple (n1, n2, . . . , nk) ∈ Nk. Strictly speaking,
though we will frequently forget to be explicit about it, we will often
be working with k-place partial functions which might not be defined
for all the k-tuples in Nk. If f is a k-place partial function, the domain
of f is the set

dom(f) = { (n1, . . . , nk) ∈ Nk | f(n1, . . . , nk) is defined } .

Similarly, the range of f is the set

ran(f) = { f(n1, . . . , nk) ∈ N | (n1, . . . , nk) ∈ dom(f) } .

In subsequent chapters we will also work with relations on the nat-
ural numbers. Recall that a k-place relation on N is formally a subset
P of Nk; P (n1, . . . , nk) is true if (n1, . . . , nk) ∈ P and false otherwise.
In particular, a 1-place relation is really just a subset of N.

Relations and functions are closely related. All one needs to know
about a k-place function f can be obtained from the (k + 1)-place
relation Pf given by

Pf (n1, . . . , nk, nk+1) ⇐⇒ f(n1, . . . , nk) = nk+1 .

81

82 12. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS

Similarly, all one needs to know about the k-place relation P can be
obtained from its characteristic function :

χP (n1, . . . , nk) =

{
1 if P (n1, . . . , nk) is true;

0 if P (n1, . . . , nk) is false.

The basic convention for representing natural numbers on the tape
of a standard Turing machine is a slight variation of unary notation : n
is represented by 1n+1. (Why would using 1n be a bad idea?) A k-tuple
(n1, n2, . . . , nk) ∈ N will be represented by 1n1+101n2+10 . . . 01nk+1, i.e.
with the representations of the individual numbers separated by 0s.
This scheme is inefficient in its use of space — compared to binary
notation, for example — but it is simple and can be implemented on
Turing machines restricted to the alphabet {1}.

Turing computable functions. With suitable conventions for
representing the input and output of a function on the natural numbers
on the tape of a Turing machine in hand, we can define what it means
for a function to be computable by a Turing machine.

Definition 12.1. A k-place function f is Turing computable, or
just computable, if there is a Turing machine M such that for any
k-tuple (n1, . . . , nk) ∈ dom(f) the computation of M with input tape
01n1+101n2+1 . . . 01nk+1 eventually halts with output tape 01f(n1,...,nk)+1.
Such a machine M is said to compute f .

Note that for a Turing machine M to compute a function f , M
need only do the right thing on the right kind of input: what M does
in other situations does not matter. In particular, it does not matter
what M might do with k-tuple which is not in the domain of f .

Example 12.1. The identity function iN: N → N, i.e. iN(n) = n,
is computable. It is computed by M = ∅, the Turing machine with an
empty table that does absolutely nothing on any input.

Example 12.2. The projection function π2
1 : N2 → N given by

π2
1(n,m) = n is computed by the Turing machine:

P 2
1 0 1

1 0R2
2 0R3 1R2
3 0L4 0R3
4 0L4 1L5
5 1L5

12. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS 83

P 2
1 acts as follows: it moves to the right past the first block of 1s

without disturbing it, erases the second block of 1s, and then returns
to the left of first block and halts.

The projection function π2
2 : N2 → N given by π2

2(n,m) = m is also
computable: the Turing machine P of Example 10.5 does the job.

Problem 12.1. Find Turing machines that compute the following
functions and explain how they work.

(1) O(n) = 0.
(2) S(n) = n+ 1.
(3) Sum(n,m) = n +m.

(4) Pred(n) =

{
n− 1 n ≥ 1

0 n = 0
.

(5) Diff(n,m) =

{
n−m n ≥ m

0 n < m
.

(6) π3
2(p, q, r) = q.

(7) πki (a1, . . . , ai, . . . , ak) = ai

We will consider methods for building functions computable by Tur-
ing machines out of simpler ones later on.

A non-computable function. In the meantime, it is worth ask-
ing whether or not every function on the natural numbers is com-
putable. No such luck!

Problem 12.2. Show that there is some 1-place function f : N→ N
which is not computable by comparing the number of such functions to
the number of Turing machines.

The argument hinted at above is unsatisfying in that it tells us there
is a non-computable function without actually producing an explicit
example. We can have some fun on the way to one.

Definition 12.2 (Busy Beaver Competition). A machine M is an
n-state entry in the busy beaver competition if:

• M has a two-way infinite tape and alphabet {1} (see Chap-
ter 11;
• M has n+ 1 states, but state n+ 1 is used only for halting (so

both M(n + 1, 0) and M(n + 1, 1) are undefined);
• M eventually halts when given a blank input tape.

M ’s score in the competition is the number of 1’s on the output tape of
its computation from a blank input tape. The greatest possible score
of an n-state entry in the competition is denoted by Σ(n).

84 12. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS

Note that there are only finitely many possible n-state entries in the
busy beaver competition because there are only finitely many (n+ 1)-
state Turing machines with alphabet {1}. Since there is at least one
n-state entry in the busy beaver competition for every n ≥ 0 , it follows
that Σ(n) is well-defined for each n ∈ N.

Example 12.3. M = ∅ is the only 0-state entry in the busy beaver
competition, so Σ(0) = 0.

Example 12.4. The machine P given by

P 0 1
1 1R2 1L2
2 1L1 1L3

is a 2-state entry in the busy beaver competition with a score of 4, so
Σ(2) ≥ 4.

The function Σ grows extremely quickly. It is known that Σ(0) = 0,
Σ(1) = 1, Σ(2) = 4, Σ(3) = 6, and Σ(4) = 13. The value of Σ(5) is
still unknown, but must be quite large.1

Problem 12.3. Show that:

(1) The 2-state entry given in Example 12.4 actually scores 4.
(2) Σ(1) = 1.
(3) Σ(3) ≥ 6.
(4) Σ(n) < Σ(n+ 1) for every n ∈ N.

Problem 12.4. Devise as high-scoring 4- and 5-state entries in the
busy beaver competition as you can.

The serious point of the busy beaver competition is that the func-
tion Σ is not a Turing computable function.

Proposition 12.5. Σ is not computable by any Turing machine.

Anyone interested in learning more about the busy beaver com-
petition should start by reading the paper [16] in which it was first
introduced.

Building more computable functions. One of the most com-
mon methods for assembling functions from simpler ones in many parts
of mathematics is composition. It turns out that compositions of com-
putable functions are computable.

1The best score known to the author by a 5-state entry in the busy beaver
competition is 4098. One of the two machines achieving this score does so in a
computation that takes over 40 million steps! The other requires only 11 million or
so. . .

12. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS 85

Definition 12.3. Suppose that m, k ≥ 1, g is an m-place function,
and h1, . . . , hm are k-place functions. Then the k-place function f is
said to be obtained from g, h1, . . . , hm by composition, written as

f = g ◦ (h1, . . . , hm) ,

if for all (n1, . . . , nk) ∈ Nk,
f(n1, . . . , nk) = g(h1(n1, . . . , nk), . . . , hm(n1, . . . , nk)).

Example 12.5. The constant function c1
1, where c1

1(n) = 1 for all
n, can be obtained by composition from the functions S and O. For
any n ∈ N,

c1
1(n) = (S ◦O)(n) = S(O(n)) = S(0) = 0 + 1 = 1 .

Problem 12.6. Suppose k ≥ 1 and a ∈ N. Use composition
to define the constant function cka, where cka(n1, . . . , nk) = a for all
(n1, . . . , nk) ∈ Nk, from functions already known to be computable.

Proposition 12.7. Suppose that 1 ≤ k, 1 ≤ m, g is a Turing
computable m-place function, and h1, . . . , hm are Turing computable
k-place functions. Then g ◦ (h1, . . . , hm) is also Turing computable.

Starting with a small set of computable functions, and applying
computable ways (such as composition) of building functions from sim-
pler ones, we will build up a useful collection of computable functions.
This will also provide a characterization of computable functions which
does not mention any type of computing device.

The “small set of computable functions” that will be the fundamen-
tal building blocks is infinite only because it includes all the projection
functions.

Definition 12.4. The following are the initial functions :

• O, the 1-place function such that O(n) = 0 for all n ∈ N;
• S, the 1-place function such that S(n) = n + 1 for all n ∈ N;

and,
• for each k ≥ 1 and 1 ≤ i ≤ k, πki , the k-place function such

that πki (n1, . . . , nk) = ni for all (n1, . . . , nk) ∈ Nk.
O is often referred to as the zero function, S is the successor function,
and the functions πki are called the projection functions .

Note that π1
1 is just the identity function on N.

We have already shown, in Problem 12.1, that all the initial func-
tions are computable. It follows from Proposition 12.7 that every func-
tion defined from the initial functions using composition (any number
of times) is computable too. Since one can build relatively few func-
tions from the initial functions using only composition. . .

86 12. COMPUTABLE AND NON-COMPUTABLE FUNCTIONS

Proposition 12.8. Suppose f is a 1-place function obtained from
the initial functions by finitely many applications of composition. Then
there is a constant c ∈ N such that f(n) ≤ n+ c for all n ∈ N.

. . . in the next chapter we will add other methods of building func-
tions to our repertoire that will allow us to build all computable func-
tions from the initial functions.

CHAPTER 13

Recursive Functions

We will add two other methods of building computable functions
from computable functions to composition, and show that one can use
the three methods to construct all computable functions on N from the
initial functions.

Primitive recursion. The second of our methods is simply called
recursion in most parts of mathematics and computer science. His-
torically, the term “primitive recursion” has been used to distinguish
it from the other recursive method of defining functions that we will
consider, namely unbounded minimalization. ... Primitive recursion
boils down to defining a function inductively, using different functions
to tell us what to do at the base and inductive steps. Together with
composition, it suffices to build up just about all familiar arithmetic
functions from the initial functions.

Definition 13.1. Suppose that k ≥ 1, g is a k-place function, and
h is a k + 2-place function. Let f be the (k + 1)-place function such
that

(1) f(n1, . . . , nk, 0) = g(n1, . . . , nk) and
(2) f(n1, . . . , nk, m+ 1) = h (n1, . . . , nk, m, f(n1, . . . , nk, m))

for every (n1, . . . , nk) ∈ Nk and m ∈ N. Then f is said to be obtained
from g and h by primitive recursion.

That is, the initial values of f are given by g, and the rest are given
by h operating on the given input and the preceding value of f .

For a start, primitive recursion and composition let us define addi-
tion and multiplication from the initial functions.

Example 13.1. Sum(n,m) = n+m is obtained by primitive recur-
sion from the initial function π1

1 and the composition S ◦ π3
3 of initial

functions as follows:

• Sum(n, 0) = π1
1(n);

• Sum(n,m + 1) = (S ◦ π3
3)(n,m,Sum(n,m)).

To see that this works, one can proceed by induction on m:

87

88 13. RECURSIVE FUNCTIONS

At the base step, m = 0, we have

Sum(n, 0) = π1
1(n) = n = n+ 0 .

Assume that m ≥ 0 and Sum(n,m) = n+m. Then

Sum(n,m + 1) = (S ◦ π3
3)(n,m,Sum(n,m))

= S(π3
3(n,m,Sum(n,m)))

= S(Sum(n,m))

= Sum(n,m) + 1

= n+m + 1 ,

as desired.

As addition is to the successor function, so multiplication is to
addition.

Example 13.2. Mult(n,m) = nm is obtained by primitive recur-
sion from O and Sum ◦ (π3

3, π
3
1):

• Mult(n, 0) = O(n);
• Mult(n,m + 1) = (Sum ◦ (π3

3, π
3
1))(n,m,Mult(n,m)).

We leave it to the reader to check that this works.

Problem 13.1. Use composition and primitive recursion to obtain
each of the following functions from the initial functions or other func-
tions already obtained from the initial functions.

(1) Exp(n,m) = nm

(2) Pred(n) (defined in Problem 12.1)
(3) Diff(n,m) (defined in Problem 12.1)
(4) Fact(n) = n!

Proposition 13.2. Suppose k ≥ 1, g is a Turing computable k-
place function, and h is a Turing computable (k+ 2)-place function. If
f is obtained from g and h by primitive recursion, then f is also Turing
computable.

Primitive recursive functions and relations. The collection of
functions which can be obtained from the initial functions by (possibly
repeatedly) using composition and primitive recursion is useful enough
to have a name.

Definition 13.2. A function f is primitive recursive if it can be
defined from the initial functions by finitely many applications of the
operations of composition and primitive recursion.

So we already know that all the initial functions, addition, and
multiplication, among others, are primitive recursive.

13. RECURSIVE FUNCTIONS 89

Problem 13.3. Show that each of the following functions is prim-
itive recursive.

(1) For any k ≥ 0 and primitive recursive (k + 1)-place function
g, the (k + 1)-place function f given by

f(n1, . . . , nk, m) = Πm
i=0g(n1, . . . , nk, i)

= g(n1, . . . , nk, 0) · . . . · g(n1, . . . , nk, m) .

(2) For any constant a ∈ N, χ{a}(n) =

{
0 n 6= a

1 n = a .

(3) h(n1, . . . , nk) =

{
f(n1, . . . , nk) (n1, . . . , nk) 6= (c1, . . . , ck)

a (n1, . . . , nk) = (c1, . . . , ck)
, if

f is a primitive recursive k-place function and a, c1, . . . , ck ∈ N
are constants.

Theorem 13.4. Every primitive recursive function is Turing com-
putable.

Be warned, however, that there are computable functions which are
not primitive recursive.

We can extend the idea of “primitive recursive” to relations by using
their characteristic functions.

Definition 13.3. Suppose k ≥ 1. A k-place relation P ⊆ Nk is
primitive recursive if its characteristic function

χP (n1, . . . , nk) =

{
1 (n1, . . . , nk) ∈ P
0 (n1, . . . , nk) /∈ P

is primitive recursive.

Example 13.3. P = {2} ⊂ N is primitive recursive since χ{2} is
recursive by Problem 13.3.

Problem 13.5. Show that the following relations and functions are
primitive recursive.

(1) ¬P , i.e. Nk \ P , if P is a primitive recursive k-place relation.
(2) P ∨ Q, i.e. P ∪Q, if P and Q are primitive recursive k-place

relations.
(3) P ∧ Q, i.e. P ∩Q, if P and Q are primitive recursive k-place

relations.
(4) Equal, where Equal(n,m) ⇐⇒ n = m.
(5) h(n1, . . . , nk, m) =

∑m
i=0 g(n1, . . . , nk, i), for any k ≥ 0 and

primitive recursive (k + 1)-place function g.
(6) Div, where Div(n,m) ⇐⇒ n | m.

90 13. RECURSIVE FUNCTIONS

(7) IsPrime, where IsPrime(n) ⇐⇒ n is prime.
(8) Prime(k) = pk, where p0 = 1 and pk is the kth prime if k ≥ 1.
(9) Power(n,m) = k, where k ≥ 0 is maximal such that nk | m.

(10) Length(n) = `, where ` is maximal such that p` | n.
(11) Element(n, i) = ni, if n = pn1

1 . . . pnkk (and ni = 0 if i > k).

(12) Subseq(n, i, j) =

{
pnii p

ni+1

i+1 . . . p
nj
j if 1 ≤ i ≤ j ≤ k

0 otherwise
, when-

ever n = pn1
1 . . . pnkk .

(13) Concat(n,m) = pn1
1 . . . pnkk p

m1
k+1 . . . p

ml
k+`, if n = pn1

1 . . . pnkk and
m = pm1

1 . . . pm`` .

Parts of Problem 13.5 give us tools for representing finite sequences
of integers by single integers, as well as some tools for manipulating
these representations. This lets us reduce, in principle, all problems
involving primitive recursive functions and relations to problems in-
volving only 1-place primitive recursive functions and relations.

Theorem 13.6. A k-place g is primitive recursive if and only if
the 1-place function h given by h(n) = g(n1, . . . , nk) if n = pn1

1 . . . pnkk
is primitive recursive.

Note. It doesn’t matter what the function h may do on an n which
does not represent a sequence of length k.

Corollary 13.7. A k-place relation P is primitive recursive if and
only if the 1-place relation P ′ is primitive recursive, where

(n1, . . . , nk) ∈ P ⇐⇒ pn1
1 . . . pnkk ∈ P ′ .

A computable but not primitive recursive function. While
primitive recursion and composition do not quite suffice to build all
Turing computable functions from the initial functions, they are pow-
erful enough that specific counterexamples are not all that easy to find.

Example 13.4 (Ackerman’s Function). Define the 2-place function
A from as follows:

• A(0, `) = S(`)
• A(S(k), 0) = A(k, 1)
• A(S(k),S(`)) = A(k,A(S(k), `))

Given A, define the 1-place function α by α(n) = A(n, n).
It isn’t too hard to show that A, and hence also α, are Turing

computable. However, though it takes considerable effort to prove it,
α grows faster with n than any primitive recursive function. (Try
working out the first few values of α. . .)

13. RECURSIVE FUNCTIONS 91

Problem 13.8. Show that the functions A and α defined in Exam-
ple 13.4 are Turing computable.

If you are very ambitious, you can try to prove the following theo-
rem.

Theorem 13.9. Suppose α is the function defined in Example 13.4
and f is any primitive recursive function. Then there is an n ∈ N such
that for all k > n, α(k) > f(k).

Corollary 13.10. The function α defined in Example 13.4 is not
primitive recursive.

. . . but if you aren’t, you can still try the following exercise.

Problem 13.11. Informally, define a computable function which
must be different from every primitive recursive function.

Unbounded minimalization. The last of our three method of
building computable functions from computable functions is unbounded
minimalization. The functions which can be defined from the initial
functions using unbounded minimalization, as well as composition and
primitive recursion, turn out to be precisely the Turing computable
functions.

Unbounded minimalization is the counterpart for functions of “brute
force” algorithms that try every possibility until they succeed. (Which,
of course, they might not. . .)

Definition 13.4. Suppose k ≥ 1 and g is a (k + 1)-place func-
tion. Then the unbounded minimalization of g is the k-place function
f defined by

f(n1, . . . , nk) = m where m is least so that g(n1, . . . , nk, m) = 0.

This is often written as f(n1, . . . , nk) = µm[g(n1, . . . , nk, m) = 0].

Note. If there is no m such that g(n1, . . . , nk, m) = 0, then the
unbounded minimalization of g is not defined on (n1, . . . , nk). This is
one reason we will occasionally need to deal with partial functions.

If the unbounded minimalization of a computable function is to be
computable, we have a problem even if we ask for some default out-
put (0, say) to ensure that it is defined for all k-tuples. The obvious
procedure which tests successive values of g to find the needed m will
run forever if there is no such m, and the incomputability of the Halt-
ing Problem suggests that other procedure’s won’t necessarily succeed
either. It follows that it is desirable to be careful, so far as possible,
which functions unbounded minimalization is applied to.

92 13. RECURSIVE FUNCTIONS

Definition 13.5. A (k + 1)-place function g is said to be regular
if for every (n1, . . . , nk) ∈ Nk, there is at least one m ∈ N so that
g(n1, . . . , nk, m) = 0.

That is, g is regular precisely if the obvious strategy of computing
g(n1, . . . , nk, m) for m = 0, 1, . . . in succession until an m is found with
g(n1, . . . , nk, m) = 0 always succeeds.

Proposition 13.12. If g is a Turing computable regular (k + 1)-
place function, then the unbounded minimalization of g is also Turing
computable.

While unbounded minimalization adds something essentially new to
our repertoire, it is worth noticing that bounded minimalization does
not.

Problem 13.13. Suppose g is a (k + 1)-place primitive recursive
regular function such that for some primitive recursive k-place function
h,

µm[g(n1, . . . , nk, m) = 0] ≤ h(n1, . . . , nk)

for all (n1, . . . , nk) ∈ N. Show that µm[g(n1, . . . , nk, m) = 0] is also
primitive recursive.

Recursive functions and relations. We can finally define an
equivalent notion of computability for functions on the natural numbers
which makes no mention of any computational device.

Definition 13.6. A k-place function f is recursive if it can be
defined from the initial functions by finitely many applications of com-
position, primitive recursion, and the unbounded minimalization of
regular functions.

Similarly, k-place partial function is recursive if it can be defined
from the initial functions by finitely many applications of composition,
primitive recursion, and the unbounded minimalization of (possibly
non-regular) functions.

In particular, every primitive recursive function is a recursive func-
tion.

Theorem 13.14. Every recursive function is Turing computable.

We shall show that every Turing computable function is recursive
later on. Similarly to primitive recursive relations we have the follow-
ing.

Definition 13.7. A k-place relation P is said to be recursive (Tur-
ing computable) if its characteristic function χP is recursive (Turing
computable).

13. RECURSIVE FUNCTIONS 93

Since every recursive function is Turing computable, and vice versa,
“recursive” is just a synonym of “Turing computable”, for functions and
relations alike.

Also, similarly to Theorem 13.6 and Corollary 13.7 we have the
following.

Theorem 13.15. A k-place function g is recursive if and only if
the 1-place function h given by h(n) = g(n1, . . . , nk) if n = pn1

1 . . . pnkk
is recursive.

As before, it doesn’t really matter what the function h does on an
n which does not represent a sequence of length k.

Corollary 13.16. A k-place relation P is recursive if and only if
the 1-place relation P ′ is recursive, where

(n1, . . . , nk) ∈ P ⇐⇒ pn1
1 . . . pnkk ∈ P ′ .

CHAPTER 14

Characterizing Computability

By putting together some of the ideas in Chapters 12 and 13, we can
use recursive functions to simulate Turing machines. This will let us
show that Turing computable functions are recursive, completing the
argument that Turing machines and recursive functions are essentially
equivalent models of computation. We will also use these techniques to
construct an universal Turing machine (or UTM): a machine U that,
when given as input (a suitable description of) some Turing machine M
and an input tape a for M , simulates the computation of M on input
a. In effect, an universal Turing machine is a single piece of hardware
that lets us treat other Turing machines as software.

Turing computable functions are recursive. Our basic strat-
egy is to show that any Turing machine can be simulated by some
recursive function. Since recursive functions operate on integers, we
will need to encode the tape positions of Turing machines, as well as
Turing machines themselves, by integers. For simplicity, we shall stick
to Turing machines with alphabet {1}; we already know from Chap-
ter 11 that such machines can simulate Turing machines with bigger
alphabets.

Definition 14.1. Suppose (s, i, a) is a tape position such that all
but finitely many cells of a are blank. Let n be any positive integer
such that ak = 0 for all k > n. Then the code of (s, i, a) is

p(s, i, a)q = 2s3i5a07a111a2 . . . pann+3 .

Example 14.1. Consider the tape position (2, 1, 1001). Then

p(2, 1, 1001)q = 22315170110131 = 780 .

Problem 14.1. Find the codes of the following tape positions.

(1) (1, 0, a), where a is entirely blank.
(2) (4, 3, a), where a is 1011100101.

Problem 14.2. What is the tape position whose code is 10314720?

When dealing with computations, we will also need to encode se-
quences of tape positions by integers.

95

96 14. CHARACTERIZING COMPUTABILITY

Definition 14.2. Suppose t1t2 . . . tn is a sequence of tape positions.
Then the code of this sequence is

pt1t2 . . . tnq = 2pt1q3pt2q . . . pptnqn .

Note. Both tape positions and sequences of tape positions have
unique codes.

Problem 14.3. Pick some (short!) sequence of tape positions and
find its code.

Having defined how to represent tape positions as integers, we now
need to manipulate these representations using recursive functions.
The recursive functions and relations in Problems 13.3 and 13.5 provide
most of the necessary tools.

Problem 14.4. Show that both of the following relations are prim-
itive recursive.

(1) TapePos, where TapePos(n) ⇐⇒ n is the code of a tape
position.

(2) TapePosSeq, where TapePosSeq(n) ⇐⇒ n is the code of
a sequence of tape positions.

Problem 14.5. Show that each of the following is primitive recur-
sive.

(1) The 4-place function Entry such that

Entry(j, w, t, n)

=

p(t, i+ w − 1, a′)q if n = p(s, i, a)q, j ∈ {0, 1},

w ∈ {0, 2}, i+ w − 1 ≥ 0, and t ≥ 1,

where a′k = ak for k 6= i and a′i = j;

0 otherwise.

(2) For any Turing machine M with alphabet {1}, the 1-place
function StepM such that

StepM(n) =

pM(s, i, a)q if n = p(s, i, a)q and

M(s, i, a) is defined;

0 otherwise.

(3) For any Turing machine M with alphabet {1}, the 1-place re-
lation CompM , where

CompM(n) ⇐⇒ n is the code of a computation of M .

14. CHARACTERIZING COMPUTABILITY 97

The functions and relations above may be primitive recursive, but
the last big step in showing that Turing computable functions are re-
cursive requires unbounded minimalization.

Proposition 14.6. For any Turing machine M with alphabet {1},
the 1-place (partial) function SimM is recursive, where

SimM (n) = p(t, j,b)q
if n = p(1, 0, a)q for some input tape a and M eventually halts in
position (t, j,b) on input a. (Note that SimM (n) may be undefined if
n 6= p(1, 0, a)q for an input tape a, or if M does not eventually halt on
input a.)

Lemma 14.7. Show that the following functions are primitive re-
cursive:

(1) For any fixed k ≥ 1, Codek(n1, . . . , nk) = p(1, 0, 01n1 0 . . . 01nk)q.
(2) Decode(t) = n if t = p(s, i, 01n+1)q (and anything you like

otherwise).

Theorem 14.8. Any k-place Turing computable function is recur-
sive.

Corollary 14.9. A function f : Nk → N is Turing computable if
and only if it is recursive.

Thus Turing machines and recursive functions are essentially equiv-
alent models of computation.

An universal Turing machine. One can push the techniques
used above little farther to get a recursive function that can simulate
any Turing machine. Since every recursive function can be computed
by some Turing machine, this effectively gives us an universal Turing
machine.

Problem 14.10. Devise a suitable definition for the code pMq of
a Turing machine M with alphabet {1}.

Problem 14.11. Show, using your definition of pMq from Problem
14.10, that the following are primitive recursive.

(1) The 2-place function Step, where

Step(m,n) =

pM(s, i, a)q if m = pMq for some machine M ,

n = p(s, i, a)q, & M(s, i, a) is defined;

0 otherwise.

98 14. CHARACTERIZING COMPUTABILITY

(2) The 2-place relation Comp, where

Comp(m,n) ⇐⇒ m = pMq
for some Turing machine M and n is the code of a computation
of M .

Proposition 14.12. The 2-place (partial) function Sim is recur-
sive, where, for any Turing machine M with alphabet {1} and input
tape a for M ,

Sim(pMq, p(1, 0, a)q) = p(t, j,b)q
if M eventually halts in position (t, j,b) on input a. (Note that Sim(m,n)
may be undefined if m is not the code of some Turing machine M , or
if n 6= p(1, 0, a)q for an input tape a, or if M does not eventually halt
on input a.)

Corollary 14.13. There is a Turing machine U which can simu-
late any Turing machine M .

Corollary 14.14. There is a recursive function f which can com-
pute any other recursive function.

The Halting Problem. An effective method to determine whether
or not a given machine will eventually halt on a given input — short
of waiting forever! — would be nice to have. For example, assuming
Church’s Thesis is true, such a method would let us identify computer
programs which have infinite loops before we attempt to execute them.

The Halting Problem. Given a Turing machine M and an in-
put tape a, is there an effective method to determine whether or not
M eventually halts on input a?

Given that we are using Turing machines to formalize the notion
of an effective method, one of the difficulties with solving the Halting
Problem is representing a given Turing machine and its input tape as
input for another machine. As this is one of the things that was accom-
plished in the course of constructing an universal Turing machine, we
can now formulate a precise version of the Halting Problem and solve
it.

The Halting Problem. Is there a Turing machine T which, for
any Turing machine M with alphabet {1} and tape a for M , halts on
input

01pMq+101p(1,0,a)q+1

with output 011 if M halts on input a, and with output 01 if M does
not halt on input a?

14. CHARACTERIZING COMPUTABILITY 99

Note that this precise version of the Halting Problem is equivalent
to the informal one above only if Church’s Thesis is true.

Problem 14.15. Show that there is a Turing machine C which, for
any Turing machine M with alphabet {1}, on input

01pMq+1

eventually halts with output

01pMq+101p(0,1,01pMq+1)q+1

Theorem 14.16. The answer to (the precise version of) the Halting
Problem is “No.”

Recursively enumerable sets. The following notion is of partic-
ular interest in the advanced study of computability.

Definition 14.3. A subset (i.e. a 1-place relation) P of N is re-
cursively enumerable, often abbreviated as r.e., if there is a 1-place
recursive function f such that P = im(f) = { f(n) | n ∈ N }.

Since the image of any recursive 1-place function is recursively enu-
merable by definition, we do not lack for examples. For one, the set E
of even natural numbers is recursively enumerable, since it is the image
of f(n) = Mult(S(S(O(n))), n).

Proposition 14.17. If P is a 1-place recursive relation, then P is
recursively enumerable.

This proposition is not reversible, but it does come close.

Proposition 14.18. P ⊆ N is recursive if and only if both P and
N \ P are recursively enumerable.

Problem 14.19. Find an example of a recursively enumerable set
which is not recursive.

Problem 14.20. Is P ⊆ N primitive recursive if and only if both
P and N \ P are enumerable by primitive recursive functions?

Problem 14.21. P ⊆ N recursively enumerable if and only if there
is a 1-place recursive partial function g such that P = dom(g) = {n |
g(n) is defined }

Hints for Chapters 10–14

Hints for Chapter 10.

10.1. This should be easy. . .

10.2. Ditto.

10.3. (1) Any machine with the given alphabet and a table
with three non-empty rows will do.

(2) Every entry in the table in the 0 column must write a 1 in the
scanned cell; similarly, every entry in the 1 column must write
a 0 in the scanned cell.

(3) What’s the simplest possible table for a given alphabet?

10.4. Unwind the definitions step by step in each case. Not all of
these are computations. . .

10.5. Examine your solutions to the previous problem and, if nec-
essary, take the computations a little farther.

10.6. Have the machine run on forever to the right, writing down
the desired pattern as it goes no matter what may be on the tape
already.

10.7. Consider your solution to Problem 10.6 for one possible ap-
proach. It should be easy to find simpler solutions, though.

10.8. Consider the tasks S and T are intended to perform.

10.9. (1) Use four states to write the 1s, one for each.
(2) The input has a convenient marker.
(3) Run back and forth to move one marker n cells from the block

of 1’s while moving another through the block, and then fill in.
(4) Modify the previous machine by having it delete every other

1 after writing out 12n.
(5) Run back and forth to move the right block of 1s cell by cell

to the desired position.
(6) Run back and forth to move the left block of 1s cell by cell

past the other two, and then apply a minor modification of
the machine in part 5.

101

102 HINTS FOR CHAPTERS 10–14

(7) Variations on the ideas used in part 6 should do the job.
(8) Run back and forth between the blocks, moving a marker

through each. After the race between the markers to the ends
of their respective blocks has been decided, erase everything
and write down the desired output.

Hints for Chapter 11.

11.1. This ought to be easy.

11.2. Generalize the technique of Example 11.1, adding two new
states to help with each old state that may cause a move in different
directions. You do have to be a bit careful not to make a machine that
would run off the end of the tape when the original would not.

11.3. You only need to change the parts of the definitions involving
the symbols 0 and 1.

11.4. If you have trouble figuring out whether the subroutine of Z
simulating state 1 of W on input y, try tracing the partial computations
of W and Z on other tapes involving y.

11.5. Generalize the concepts used in Example 11.2. Note that the
simulation must operate with coded versions of Ms tape, unless Σ =
{1}. The key idea is to use the tape of the simulator in blocks of some
fixed size, with the patterns of 0s and 1s in each block corresponding
to elements of Σ.

11.6. This should be straightforward, if somewhat tedious. You do
need to be careful in coming up with the appropriate input tapes for
O.

11.7. Generalize the technique of Example 11.3, splitting up the
tape of the simulator into upper and lower tracks and splitting each
state of N into two states in P . You will need to be quite careful in
describing just how the latter is to be done.

11.8. This is mostly pretty easy. The only problem is to devise N
so that one can tell from its output whether P halted or crashed, and
this is easy to indicate using some extra symbol in Ns alphabet.

11.9. If you’re in doubt, go with one read/write scanner for each
tape, and have each entry in the table of a two-tape machine take
both scanners into account. Simulating such a machine is really just a
variation on the techniques used in Example 11.3.

HINTS FOR CHAPTERS 10–14 103

11.10. Such a machine should be able to move its scanner to cells
up and down from the current one, as well to the side. (Diagonally too,
if you want to!) Simulating such a machine on a single tape machine is
a challenge. You might find it easier to first describe how to simulate
it on a suitable multiple-tape machine.

Hints for Chapter 12.

12.1. (1) Delete most of the input.
(2) Add a one to the far end of the input.
(3) Add a little to the input, and delete a little more elsewhere.
(4) Delete a little from the input most of the time.
(5) Run back and forth between the two blocks in the input, delet-

ing until one side disappears. Clean up appropriately! (This
is a relative of Problem 10.9.8.)

(6) Delete two of blocks and move the remaining one.
(7) This is just a souped-up version of the machine immediately

preceding. . .

12.2. There are just as many functions N → N as there are real
numbers, but only as many Turing machines as there are natural num-
bers.

12.3. (1) Trace the computation through step-by-step.
(2) Consider the scores of each of the 1-state entries in the busy

beaver competition.
(3) Find a 3-state entry in the busy beaver competition which

scores six.
(4) Show how to turn an n-state entry in the busy beaver compe-

tition into an (n + 1)-state entry that scores just one better.

12.4. You could start by looking at modifications of the 3-state
entry you devised in Problem 12.3.3, but you will probably want to do
some serious fiddling to do better than what Problem 12.3.4 do from
there.

12.5. Suppose Σ was computable by a Turing machine M . Modify
M to get an n-state entry in the busy beaver competition for some
n which achieves a score greater than Σ(n). The key idea is to add
a “pre-processor” to M which writes a block with more 1s than the
number odf states that M and the pre-processor have between them.

12.6. Generalize Example 12.5.

104 HINTS FOR CHAPTERS 10–14

12.7. Use machines computing g, h1, . . . , hm as sub-machines of
the machine computing the composition. You might also find sub-
machines that copy the original input and various stages of the output
useful. It is important that each sub-machine get all the data it needs
and does not damage the data needed by other sub-machines.

12.8. Proceed by induction on the number of applications of com-
position used to define f from the initial functions.

Hints for Chapter 13.

13.1. (1) Exponentiation is to multiplication as multiplication
is to addition.

(2) This is straightforward except for taking care of Pred(0) =
Pred(1) = 0.

(3) Diff is to Pred as S is to Sum.
(4) This is straightforward if you let 0! = 1.

13.2. Machines used to compute g and h are the principal parts
of the machine computing f , along with parts to copy, move, and/or
delete data on the tape between stages in the recursive process.

13.3. (1) f is to g as Fact is to the identity function.
(2) Use Diff and a suitable constant function as the basic building

blocks.
(3) This is a slight generalization of the preceding part.

13.4. Proceed by induction on the number of applications of prim-
itive recursion and composition.

13.5. (1) Use a composition including Diff, χP , and a suit-
able constant function.

(2) A suitable composition will do the job; it’s just a little harder
than it looks.

(3) A suitable composition will do the job; it’s rather more straight-
forward than the previous part.

(4) Note that n = m exactly when n−m = 0 = m− n.
(5) Adapt your solution from the first part of Problem 13.3.
(6) First devise a characteristic function for the relation

Product(n, k,m) ⇐⇒ nk = m,

and then sum up.
(7) Use χDiv and sum up.
(8) Use IsPrime and some ingenuity.
(9) Use Exp and Div and some more ingenuity.

(10) A suitable combination of Prime with other things will do.

HINTS FOR CHAPTERS 10–14 105

(11) A suitable combination of Prime and Power will do.
(12) Throw the kitchen sink at this one. . .
(13) Ditto.

13.6. In each direction, use a composition of functions already
known to be primitive recursive to modify the input as necessary.

13.7. A straightforward application of Theorem 13.6.

13.8. This is not unlike, though a little more complicated than,
showing that primitive recursion preserves computability.

13.9. It’s not easy! Look it up. . .

13.10. This is a very easy consequence of Theorem 13.9.

13.11. Listing the definitions of all possible primitive recursive
functions is a computable task. Now borrow a trick from Cantor’s
proof that the real numbers are uncountable. (A formal argument to
this effect could be made using techniques similar to those used to show
that all Turing computable functions are recursive in the next chapter.)

13.12. The strategy should be easy. Make sure that at each stage
you preserve a copy of the original input for use at later stages.

13.13. The primitive recursive function you define only needs to
check values of g(n1, . . . , nk, m) for m such that 0 ≤ m ≤ h(n1, . . . , nk),
but it still needs to pick the least m such that g(n1, . . . , nk, m) = 0.

13.14. This is very similar to Theorem 13.4.

13.15. This is virtually identical to Theorem 13.6.

13.16. This is virtually identical to Corollary 13.7.

Hints for Chapter 14.

14.1. Emulate Example 14.1 in both parts.

14.2. Write out the prime power expansion of the given number
and unwind Definition 14.1.

14.3. Find the codes of each of the positions in the sequence you
chose and then apply Definition 14.2.

14.4. (1) χTapePos(n) = 1 exactly when the power of 2 in the
prime power expansion of n is at least 1 and every other prime
appears in the expansion with a power of 0 or 1. This can
be achieved with a composition of recursive functions from
Problems 13.3 and 13.5.

106 HINTS FOR CHAPTERS 10–14

(2) χTapePosSeq(n) = 1 exactly when n is the code of a sequence of
tape positions, i.e. every power in the prime power expansion
of n is the code of a tape position.

14.5. (1) If the input is of the correct form, make the necessary
changes to the prime power expansion of n using the tools in
Problem 13.5.

(2) Piece StepM together by cases using the function Entry in
each case. The piecing-together works a lot like redefining a
function at a particular point in Problem 13.3.

(3) If the input is of the correct form, use the function StepM

to check that the successive elements of the sequence of tape
positions are correct.

14.6. The key idea is to use unbounded minimalization on χComp,
with some additions to make sure the computation found (if any) starts
with the given input, and then to extract the output from the code of
the computation.

14.7. (1) To define Codek, consider what p(1, 0, 01n1 0 . . . 01nk)q
is as a prime power expansion, and arrange a suitable compo-
sition to obrtain it from (n1, . . . , nk).

(2) To define Decode you only need to count how many pow-
ers of primes other than 3 in the prime-power expansion of
p(s, i, 01n+1)q are equal to 1.

14.8. Use Proposition 14.6 and Lemma 14.7.

14.9. This follows directly from Theorems 13.14 and 14.8.

14.10. Take some creative inspiration from Definitions 14.1 and
14.2. For example, if (s, i) ∈ dom(M) and M(s, i) = (j, d, t), you could
let the code of M(s, i) be

pM(s, i)q = 2s3i5j7d+111t .

14.11. Much of what you need for both parts is just what was
needed for Problem 14.5, except that Step is probably easier to define
than StepM was. (Define it as a composition. . .) The additional
ingredients mainly have to do with using m = pMq properly.

14.12. Essentially, this is to Problem 14.11 as proving Proposition
14.6 is to Problem 14.5.

14.13. The machine that computes SIM does the job.

HINTS FOR CHAPTERS 10–14 107

14.14. A modification of SIM does the job. The modifications are
needed to handle appropriate input and output. Check Theorem 13.15
for some ideas on what may be appropriate.

14.15. This can be done directly, but may be easier to think of in
terms of recursive functions.

14.16. Suppose the answer was yes and such a machine T did exist.
Create a machine U as follows. Give T the machine C from Problem
14.15 as a pre-processor and alter its behaviour by having it run forever
if M halts and halt if M runs forever. What will T do when it gets
itself as input?

14.17. Use χP to help define a function f such that im(f) = P .

14.18. One direction is an easy application of Proposition 14.17.
For the other, given an n ∈ N, run the functions enumerating P and
N \ P concurrently until one or the other outputs n.

14.19. Consider the set of natural numbers coding (according to
some scheme you must devise) Turing machines together with input
tapes on which they halt.

14.20. See how far you can adapt your argument for Proposition
14.18.

14.21. This may well be easier to think of in terms of Turing ma-
chines. Run a Turing machine that computes g for a few steps on the
first possible input, a few on the second, a few more on the first, a few
more on the second, a few on the third, a few more on the first, . . .

Part IV

Incompleteness

CHAPTER 15

Preliminaries

It was mentioned in the Introduction that one of the motivations for
the development of notions of computability was the following question.

Entscheidungsproblem. Given a reasonable set Σ of formulas
of a first-order language L and a formula ϕ of L, is there an effective
method for determining whether or not Σ ` ϕ? �

Armed with knowledge of first-order logic on the one hand and
of computability on the other, we are in a position to formulate this
question precisely and then solve it. To cut to the chase, the answer is
usually “no”. Gödel’s Incompleteness Theorem asserts, roughly, that
given any set of axioms in a first-order language which are computable
and also powerful enough to prove certain facts about arithmetic, it
is possible to formulate statements in the language whose truth is not
decided by the axioms. In particular, it turns out that no consistent
set of axioms can hope to prove its own consistency.

We will tackle the Incompleteness Theorem in three stages. First,
we will code the formulas and proofs of a first-order language as num-
bers and show that the functions and relations involved are recursive.
This will, in particular, make it possible for us to define a “computable
set of axioms” precisely. Second, we will show that all recursive func-
tions and relations can be defined by first-order formulas in the presence
of a fairly minimal set of axioms about elementary number theory. Fi-
nally, by putting recursive functions talking about first-order formulas
together with first-order formulas defining recursive functions, we will
manufacture a self-referential sentence which asserts its own unprov-
ability.

Note. It will be assumed in what follows that you are familiar with
the basics of the syntax and semantics of first-order languages, as laid
out in Chapters 5–8 of this text. Even if you are already familiar with
the material, you may wish to look over Chapters 5–8 to familiarize
yourself with the notation, definitions, and conventions used here, or
at least keep them handy in case you need to check some such point.

111

112 15. PRELIMINARIES

A language for first-order number theory. To keep things as
concrete as possible we will work with and in the following language
for first-order number theory, mentioned in Example 5.2.

Definition 15.1. LN is the first-order language with the following
symbols:

(1) Parentheses: (and)
(2) Connectives: ¬ and →
(3) Quantifier: ∀
(4) Equality: =
(5) Variable symbols: v0, v2, v3, . . .
(6) Constant symbol: 0
(7) 1-place function symbol: S
(8) 2-place function symbols: +, ·, and E.

The non-logical symbols of LN , 0, S, +, ·, and E, are intended
to name, respectively, the number zero, and the successor, addition,
multiplication, and exponentiation functions on the natural numbers.
That is, the (standard!) structure this language is intended to discuss
is N = (N, 0,S,+, ·,E).

Completeness. The notion of completeness used in the Incom-
pleteness Theorem is different from the one used in the Completeness
Theorem.1 “Completeness” in the latter sense is a property of a logic:
it asserts that whenever Γ |= σ (i.e. the truth of the sentence σ follows
from that of the set of sentences Γ), Γ ` σ (i.e. there is a deduction of σ
from Γ). The sense of “completeness” in the Incompleteness Theorem,
defined below, is a property of a set of sentences.

Definition 15.2. A set of sentences Σ of a first-order language L
is said to be complete if for every sentence τ either Σ ` τ or Σ ` ¬τ .

That is, a set of sentences, or non-logical axioms, is complete if it
suffices to prove or disprove every sentence of the langage in in question.

Proposition 15.1. A consistent set Σ of sentences of a first-order
language L is complete if and only if the theory of Σ,

Th(Σ) = { τ | τ is a sentence of L and Σ ` τ } ,
is maximally consistent.

1Which, to confuse the issue, was also first proved by Kurt Gödel.

CHAPTER 16

Coding First-Order Logic

We will encode the symbols, formulas, and deductions of LN as
natural numbers in such a way that the operations necessary to ma-
nipulate these codes are recursive. Although we will do so just for LN ,
any countable first-order language can be coded in a similar way.

Gödel coding. The basic approach of the coding scheme we will
use was devised by Gödel in the course of his proof of the Incomplete-
ness Theorem.

Definition 16.1. To each symbol s of LN we assign an unique
positive integer psq, the Gödel code of s, as follows:

(1) p(q = 1 and p)q = 2
(2) p¬q = 3 and p→q = 4
(3) p∀q = 5
(4) p=q = 6.
(5) pvkq = k + 12
(6) p0q = 7
(7) pSq = 8
(8) p+q = 9, p·q = 10, and pEq = 11

Note that each positive integer is the Gödel code of one and only one
symbol of LN . We will also need to code sequences of the symbols of
LN , such as terms and formulas, as numbers, not to mention sequences
of sequences of symbols of LN , such as deductions.

Definition 16.2. Suppose s1s2 . . . sk is a sequence of symbols of
LN . Then the Gödel code of this sequence is

ps1 . . . skq = pps1q1 . . . ppskqk ,

where pn is the nth prime number.
Similarly, if σ1σ2 . . . σ` is a sequence of sequences of symbols of LN ,

then the Gödel code of this sequence is

pσ1 . . . σ`q = ppσ1q

1 . . . ppσ`qk .

113

114 16. CODING FIRST-ORDER LOGIC

Example 16.1. The code of the formula ∀v1 = ·v1S0v1 (the official
form of ∀v1 v1 · S0 = v1), p∀v1 = ·v1S0v1q, works out to

2p∀q3pv1q5p=q7p·q11pv1q13pSq17p0q19pv1q = 253135671011131381771913

= 109425289274918632559342112641443058962750733001979829025245569500000 .

This is not the most efficient conceivable coding scheme!

Example 16.2. The code of the sequence of formulas

= 00 i.e. 0 = 0
(= 00→= S0S0) i.e. 0 = 0→ S0 = S0
= S0S0 i.e. S0 = S0

works out to

2p=00q3p(=00→=S0S0)q5p=S0S0q

= 22p=q3p0q5p0q

· 32p(q3p=q5p0q7p0q11p→q13p=q17pSq19p0q23pSq29p0q31p)q

· 52p=q3pSq5p0q7pSq11p0q

= 2263757

321365777114136178197238297312

526385778117

,

which is large enough not to be worth the bother of working it out
explicitly.

Problem 16.1. Pick a short sequence of short formulas of LN and
find the code of the sequence.

A particular integer n may simultaneously be the Gödel code of a
symbol, a sequence of symbols, and a sequence of sequences of symbols
of LN . We shall rely on context to avoid confusion, but, with some
more work, one could set things up so that no integer was the code of
more than one kind of thing. In any case, we will be most interested
in the cases where sequences of symbols are (official) terms or formulas
and where sequences of sequences of symbols are sequences of (official)
formulas. In these cases things are a little simpler.

Problem 16.2. Is there a natural number n which is simultaneously
the code of a symbol of LN , the code of a formula of LN , and the code
of a sequence of formulas of LN? If not, how many of these three things
can a natural number be?

Recursive operations on Gödel codes. We will need to know
that various relations and functions which recognize and manipulate
Gödel codes are recursive, and hence computable.

16. CODING FIRST-ORDER LOGIC 115

Problem 16.3. Show that each of the following relations is primi-
tive recursive.

(1) Term(n) ⇐⇒ n = ptq for some term t of LN .
(2) Formula(n) ⇐⇒ n = pϕq for some formula ϕ of LN .
(3) Sentence(n) ⇐⇒ n = pσq for some sentence σ of LN .
(4) Logical(n) ⇐⇒ n = pγq for some logical axiom γ of LN .

Using these relations as building blocks, we will develop relations
and functions to handle deductions of LN . First, though, we need to
make “a computable set of formulas” precise.

Definition 16.3. A set ∆ of formulas of LN is said to be recursive
if the set of Gödel codes of formulas of ∆,

p∆q = { pδq | δ ∈ ∆ } ,
is a recursive subset of N (i.e. a recursive 1-place relation). Similarly,
∆ is said to be recursively enumerable if p∆q is recursively enumerable.

Problem 16.4. Suppose ∆ is a recursive set of sentences of LN .
Show that each of the following relations is recursive.

(1) Premiss∆(n) ⇐⇒ n = pβq for some formula β of LN which
is either a logical axiom or in ∆.

(2) Formulas(n) ⇐⇒ n = pϕ1 . . . ϕkq for some sequence
ϕ1 . . . ϕk of formulas of LN .

(3) Inference(n, i, j) ⇐⇒ n = pϕ1 . . . ϕkq for some sequence
ϕ1 . . . ϕk of formulas of LN , 1 ≤ i, j ≤ k, and ϕk follows from
ϕi and ϕj by Modus Ponens.

(4) Deduction∆(n) ⇐⇒ n = pϕ1 . . . ϕkq for a deduction ϕ1 . . . ϕk
from ∆ in LN .

(5) Conclusion∆(n,m) ⇐⇒ n = pϕ1 . . . ϕkq for a deduction
ϕ1 . . . ϕk from ∆ in LN and m = pϕkq.

If p∆q is primitive recursive, which of these are primitive recursive?

It is at this point that the connection between computability and
completeness begins to appear.

Theorem 16.5. Suppose ∆ is a recursive set of sentences of LN .
Then pTh(∆)q is

(1) recursively enumerable, and
(2) recursive if and only if ∆ is complete.

Note. It follows that if ∆ is not complete, then pTh(∆)q is an
example of a recursively enumerable but not recursive set.

CHAPTER 17

Defining Recursive Functions In Arithmetic

The definitions and results in Chapter 17 let us use natural numbers
and recursive functions to code and manipulate formulas of LN . We
will also need complementary results that let us use terms and formu-
las of LN to represent and manipulate natural numbers and recursive
functions.

Axioms for basic arithmetic. We will define a set of non-logical
axioms in LN which prove enough about the operations of successor,
addition, mutliplication, and exponentiation to let us define all the
recursive functions using formulas of LN . The non-logical axioms in
question essentially guarantee that basic arithmetic works properly.

Definition 17.1. Let A be the following set of sentences of LN ,
written out in official form.

N1: ∀v0 (¬ = Sv00)
N2: ∀v0 ((¬ = v00)→ (¬∀v1 (¬ = Sv1v0)))
N3: ∀v0∀v1 (= Sv0Sv1 →= v0v1)
N4: ∀v0 = +v00v0

N5: ∀v0∀v1 = +v0Sv1S + v0v1

N6: ∀v0 = ·v000
N7: ∀v0∀v1 = ·v0Sv1 + ·v0v1v0

N8: ∀v0 = Ev00S0
N9: ∀v0∀v1 = Ev0Sv1 · Ev0v1v0

Translated from the official forms, A consists of the following ax-
ioms about the natural numbers:

N1: For all n, n + 1 6= 0.
N2: For all n, n 6= 0 there is a k such that k + 1 = n.
N3: For all n and k, n+ 1 = k + 1 implies that n = k.
N4: For all n, n + 0 = n.
N5: For all n and k, n+ (k + 1) = (n+ k) + 1.
N6: For all n, n · 0 = 0.
N7: For all n and k, n · (k + 1) = (n · k) + n.
N8: For all n, n0 = 1.
N9: For all n and k, nk+1 = (nk) · n.

117

118 17. DEFINING RECURSIVE FUNCTIONS IN ARITHMETIC

Each of the axioms in A is true of the natural numbers:

Proposition 17.1. N |= A, where N = (N, 0,S,+, ·,E) is the
structure consisting of the natural numbers with the usual zero and
the usual successor, addition, multiplication, and exponentiation oper-
ations.

However, A is a long way from being able to prove all the sentences
of first-order arithmetic true in N. For example, though we won’t prove
it, it turns out that A is not enough to ensure that induction works:
that for every formula ϕ with at most the variable x free, if ϕx0 and
∀y (ϕxy → ϕxSy) hold, then so does ∀xϕ. On the other hand, neither LN
nor A are quite as minimal as they might be. For example, with some
(considerable) extra effort one could do without E and define it from ·
and +.

Representing functions and relations. For convenience, we
will adopt the following conventions. First, we will often abbreviate
the term of LN consisting of m Ss followed by 0 by Sm0. For example,
S30 abbreviates SSS0. The term Sm0 is a convenient name for the
natural number m in the language LN since the interpretation of Sm0
in N is m:

Lemma 17.2. For every m ∈ N and every assignment s for N,
s(Sm0) = m.

Second, if ϕ is a formula of LN with all of its free variables among
v1, . . . , vk, and m0, m1, . . . , mk are natural numbers, we will write
ϕ(Sm10, . . . , Smk0) for the sentence ϕv1...vk

Sm1 0,...,Smk0, i.e. ϕ with Smi0 sub-
stituted for every free occurrence of vi. Since the term Smi0 involves
no variables, it is substitutable for vi in ϕ.

Definition 17.2. Suppose Σ is a set of sentences of LN . A k-place
function f is said to be representable in Th(Σ) = { τ | Σ ` τ } if there
is a formula ϕ of LN with at most v1, . . . , vk, and vk+1 as free variables
such that

f(n1, . . . , nk) = m ⇐⇒ ϕ(Sn10, . . . , Snk0, Sm0) ∈ Th(Σ)

⇐⇒ Σ ` ϕ(Sn10, . . . , Snk0, Sm0)

for all n1, . . . , nk, and m in N. The formula ϕ is said to represent f in
Th(Σ).

We will use this definition mainly with Σ = A.

Example 17.1. The constant function c1
3 given by c1

3(n) = 3 is
representable in Th(A); v2 = S30 is a formula representing it. Note

17. DEFINING RECURSIVE FUNCTIONS IN ARITHMETIC 119

that that this formula has no free variable for the input of the 1-place
function, but then the input is irrelevant. . .

To see that v2 = S30 really does represent c1
3 in Th(A), we need to

verify that

c1
3(n) = m ⇐⇒ A ` v2 = S30(Sn0, Sm0)

⇐⇒ A ` Sm0 = S30

for all n,m ∈ N.
In one direction, suppose that c1

3(n) = m. Then, by the definition
of c1

3, we must have m = 3. Now

(1) ∀xx = x → S30 = S30 A4
(2) ∀xx = x A8
(3) S30 = S30 1,2 MP

is a deduction of S30 = S30 from A. Hence if c1
3(n) = m, then A `

Sm0 = S30.
In the other direction, suppose that A ` Sm0 = S30. Since N |= A,

it follows that N |= Sm0 = S30. It follows from Lemma 17.2 that
m = 3, so c1

3(n) = m. Hence if A ` Sm0 = S30, then c1
3(n) = m.

Problem 17.3. Show that the projection function π3
2 can be repre-

sented in Th(A).

Definition 17.3. A k-place relation P ⊆ Nk is said to be repre-
sentable in Th(Σ) if there is a formula ψ of LN with at most v1, . . . ,
vk as free variables such that

P (n1, . . . , nk) ⇐⇒ ψ(Sn10, . . . , Snk0) ∈ Th(Σ)

⇐⇒ Σ ` ψ(Sn10, . . . , Snk0)

for all n1, . . . , nk in N. The formula ψ is said to represent P in Th(Σ).

We will also use this definition mainly with Σ = A.

Example 17.2. Almost the same formula, v1 = S30, serves to
represent the set — i.e. 1-place relation — {3} in Th(A). Showing
that v1 = S30 really does represent {3} in Th(A) is virtually identical
to the corresponding argument in Example 17.1.

Problem 17.4. Explain why v2 = SSS0 does not represent the set
{3} in Th(A) and v1 = SSS0 does not represent the constant function
c1

3 in Th(A).

Problem 17.5. Show that the set of all even numbers can repre-
sentable in Th(A).

120 17. DEFINING RECURSIVE FUNCTIONS IN ARITHMETIC

Problem 17.6. Show that the initial functions are representable in
Th(A):

(1) The zero function O(n) = 0.
(2) The successor function S(n) = n+ 1.
(3) For every positive k and i ≤ k, the projection function πki .

It turns out that all recursive functions and relations are repre-
sentable in Th(A).

Proposition 17.7. A k-place function f is representable in Th(A)
if and only if the k + 1-place relation Pf defined by

Pf (n1, . . . , nk, nk+1) ⇐⇒ f(n1, . . . , nk) = nk+1

is representable in Th(A).
Also, a relation P ⊆ Nk is representable in Th(A) if and only if its

characteristic function χP is representable in Th(A).

Proposition 17.8. Suppose g1, . . . , gm are k-place functions and
h is an m-place function, all of them representable in Th(A). Then
f = h ◦ (g1, . . . , gm) is a k-place function representable in Th(A).

Proposition 17.9. Suppose g is a k + 1-place regular function
which is representable in Th(A). Then the unbounded minimalization
of g is a k-place function representable in Th(A).

Between them, the above results supply most of what is needed
to conclude that all recursive functions and relations on the natural
numbers are representable. The exception is showing that functions
defined by primitive recursion from representable functions are also
representable, which requires some additional effort. The basic problem
is that it is not obvious how a formula defining a function can get at
previous values of the function. To accomplish this, we will borrow a
trick from Chapter 13.

Problem 17.10. Show that each of the following relations and func-
tions (first defined in Problem 13.5) is representable in Th(A).

(1) Div(n,m) ⇐⇒ n | m
(2) IsPrime(n) ⇐⇒ n is prime
(3) Prime(k) = pk, where p0 = 1 and pk is the kth prime if k ≥ 1.
(4) Power(n,m) = k, where k ≥ 0 is maximal such that nk | m.
(5) Length(n) = `, where ` is maximal such that p` | n.
(6) Element(n, i) = ni, where n = pn1

1 . . . pnkk (and ni = 0 if
i > k).

Using the representable functions and relations given above, we can
represent a “history function” of any representable function. . .

17. DEFINING RECURSIVE FUNCTIONS IN ARITHMETIC 121

Problem 17.11. Suppose f is a k-place function representable in
Th(A). Show that

F (n1, . . . , nk, m) = p
f(n1,...,nk ,0)
1 . . . p

f(n1,...,nk ,m)
m+1

=
m∏
i=0

p
f(n1,...,nk,i)
i

is also representable in Th(A).

. . . and use it!

Proposition 17.12. Suppose g is a k-place function and h is a
k + 2-place function, both representable in Th(A). Then the k + 1-
place function f defined by primitive recursion from g and h is also
representable in Th(A).

Theorem 17.13. Recursive functions are representable in Th(A).

In particular, it follows that there are formulas of LN represent-
ing each of the functions from Chapter 16 for manipulating the codes
of formulas. This will permit us to construct formulas which encode
assertions about terms, formulas, and deductions; we will ultimately
prove the Incompleteness Theorem by showing there is a formula which
codes its own unprovability.

Representability. We conclude with some more general facts about
representability.

Proposition 17.14. Suppose Σ is a set of sentences of LN and f
is a k-place function which is representable in Th(Σ). Then Σ must be
consistent.

Problem 17.15. If Σ is a set of sentences of LN and P is a k-place
relation which is representable in Th(Σ), does Σ have to be consistent?

Proposition 17.16. Suppose Σ and Γ are consistent sets of sen-
tences of LN and Σ ` Γ, i.e. Σ ` γ for every γ ∈ Γ. Then every
function and relation which is representable in Th(Γ) is representable
in Th(Σ).

This lets us use everything we can do with representability in Th(A)
with any set of axioms in LN that is at least as powerful as A.

Corollary 17.17. Functions and relations which representable in
Th(A) are also representable in Th(Σ), for any consistent set of sen-
tences Σ such that Σ ` A.

CHAPTER 18

The Incompleteness Theorem

The material in Chapter 16 effectively allows us to use recursive
functions to manipulate coded formulas of LN , while the material in
Chapter 17 allows us to represent recursive functions using formulas
LN . Combining these techniques allows us to use formulas of LN to
refer to and manipulate codes of formulas of LN . This is the key to
proving Gödel’s Incompleteness Theorem and related results.

In particular, we will need to know one further trick about manip-
ulating the codes of formulas recursively, that the operation of substi-
tuting (the code of) the term Sk0 into (the code of) a formula with one
free variable is recursive.

Problem 18.1. Show that the function

Sub(n, k) =

pϕ(Sk0)q if n = pϕq for a formula ϕ of LN

with at most v1 free

0 otherwise

is recursive, and hence representable Th(A).

In order to combine the the results from Chapter 16 with those
from Chapter 17, we will also need to know the following.

Lemma 18.2. A is a recursive set of sentences of LN .

The First Incompleteness Theorem. The key result needed to
prove the First Incompleteness Theorem (another will follow shortly!)
is the following lemma. It asserts, in effect, that for any statement
about (the code of) some sentence, there is a sentence σ which is true
or false exactly when the statement is true or flase of (the code of) σ.
This fact will allow us to show that the self-referential sentence we will
need to verify the Incompleteness theorem exists.

Lemma 18.3 (Fixed-Point Lemma). Suppose ϕ is a formula of LN
with only v1 as a free variable. Then there is a sentence σ of LN such
that

A ` σ ↔ ϕ(Spσq0) .

123

124 18. THE INCOMPLETENESS THEOREM

Note that σ must be different from the sentence ϕ(Spσq0): there is
no way to find a formula ϕ with one free variable and an integer k such
that pϕ(Sk0)q = k. (Think about how Gödel codes are defined. . .)

With the Fixed-Point Lemma in hand, Gödel’s First Incompleteness
Theorem can be put away in fairly short order.

Theorem 18.4 (Gödel’s First Incompleteness Theorem). Suppose
Σ is a consistent recursive set of sentences of LN such that Σ ` A.
Then Σ is not complete.

That is, any consistent set of sentences which proves at least as
much about the natural numbers as A does can’t be both complete
and recursive. The First Incompleteness Theorem has many variations,
corollaries, and relatives, a few of which will be mentioned below. [17]
is a good place to learn about more of them.

Corollary 18.5. (1) Let Γ be a complete set of sentences of
LN such that Γ ∪ A is consistent. Then Γ is not recursive.

(2) Let ∆ be a recursive set of sentences such that ∆ ∪ A is con-
sistent. Then ∆ is not complete.

(3) The theory of N,

Th(N) = {σ | σ is a sentence of LN and N |= σ } ,
is not recursive.

There is nothing really special about working in LN . The proof
of Gödel’s Incompleteness Theorem can be executed for any first order
language and recursive set of axioms which allow one to code and prove
enough facts about arithmetic. In particular, it can be done whenever
the language and axioms are powerful enough — as in Zermelo-Fraenkel
set theory, for example — to define the natural numbers and prove some
modest facts about them.

The Second Incompleteness Theorem. Gödel also proved a
strengthened version of the Incompleteness Theorem which asserts that,
in particular, a consistent recursive set of sentences Σ of LN cannot
prove its own consistency. To get at it, we need to express the state-
ment “Σ is consistent” in LN .

Problem 18.6. Suppose Σ is a recursive set of sentences of LN .
Find a sentence of LN , which we’ll denote by Con(Σ), such that Σ is
consistent if and only if A ` Con(Σ).

Theorem 18.7 (Gödel’s Second Incompleteness Theorem). Let Σ
be a consistent recursive set of sentences of LN such that Σ ` A. Then
Σ 0 Con(Σ).

18. THE INCOMPLETENESS THEOREM 125

As with the First Incompleteness Theorem, the Second Incomplete-
ness Theorem holds for any recursive set of sentences in a first-order
language which allow one to code and prove enough facts about arith-
metic. The perverse consequence of the Second Incompleteness Theo-
rem is that only an inconsistent set of axioms can prove its own con-
sistency.

Truth and definability. A close relative of the Incompleteness
Theorem is the assertion that truth in N = (N,S,+, ·,E, 0) is not
definable in N. To make sense of this, of course, we need to sort out
what “truth” and “definable in N” mean here.

“Truth” means what it usually does in first-order logic: all we mean
when we say that a sentence σ of LN is true in N is that when σ is
true when interpreted as a statement about the natural numbers with
the usual operations. That is, σ is true in N exactly when N satisfies
σ, i.e. exactly when N |= σ.

“Definable in N” we do have to define. . .

Definition 18.1. A k-place relation is definable in N if there is a
formula ϕ of LN with at most v1, . . . , vk as free variables such that

P (n1, . . . , nk) ⇐⇒ N |= ϕ[s(v1|n1) . . . (vk|nk)]
for every assignment s of N. The formula ϕ is said to define P in N.

A definition of “function definable in N” could be made in a similar
way, of course. Definability is a close relative of representability:

Proposition 18.8. Suppose P is a k-place relation which is rep-
resentable in Th(A). Then P is definable in N.

Problem 18.9. Is the converse to Proposition 18.8 true?

The question of whether truth in N is definable is then the question
of whether the set of Gödel codes of sentences of LN true in N,

pTh(N)q = { pσq | σ is a sentence of LN and N |= σ } ,
is definable in N. It isn’t:

Theorem 18.10 (Tarski’s Undefinability Theorem). pTh(N)q is
not definable in N.

The implications. Gödel’s Incompleteness Theorems have some
serious consequences.

Since almost all of mathematics can be formalized in first-order
logic, the First Incompleteness Theorem implies that there is no effec-
tive procedure that will find and prove all theorems. This might be
considered as job security for research mathematicians.

126 18. THE INCOMPLETENESS THEOREM

The Second Incompleteness Theorem, on the other hand, implies
that we can never be completely sure that any reasonable set of axioms
is actually consistent unless we take a more powerful set of axioms on
faith. It follows that one can never be completely sure — faith aside —
that the theorems proved in mathematics are really true. This might
be considered as job security for philosophers of mathematics.

We leave the question of who gets job security from Tarski’s Unde-
finability Theorem to you, gentle reader. . .

Hints for Chapters 15–18

Hints for Chapter 15.

15.1. Compare Definition 15.2 with the definition of maximal con-
sistency.

Hints for Chapter 16.

16.1. Do what is done in Example 16.2 for some other sequence of
formulas.

16.2. You need to unwind Definitions 16.1 and 16.2, keeping in
mind that you are dealing with formulas and sequences of formulas,
not just arbitrary sequences of symbolsof LN or sequences of sequences
of symbols.

16.3. In each case, use Definitions 16.1 and 16.2, along with the
appropriate definitions from first-order logic and the tools developed
in Problems 13.3 and 13.5.

(1) Recall that in LN , a term is either a variable symbol, i.e. vk
for some k, the constant symbol 0, of the form St for some
(shorter) term t, or +t1t2 for some (shorter) terms t1 and t2.
χTerm(n) needs to check the length of the sequence coded by n.
If this is of length 1, it will need to check if the symbol coded is
0 or vk for some k; otherwise, it needs to check if the sequence
coded by n begins with an S or +, and then whether the rest
of the sequence consists of one or two valid terms. Primitive
recursion is likely to be necessary in the latter case if you can’t
figure out how to do it using the tools from Problems 13.3 and
13.5.

(2) This is similar to showing Term(n) is primitive recursive. Re-
call that in LN , a formula is of the form either = t1t2 for some
terms t1 and t2, (6 α) for some (shorter) formula α, (β → γ)
for some (shorter) formulas β and γ, or ∀vi δ for some variable
symbol vi and some (shorter) formula δ. χFormula(n) needs to
check the first symbol of the sequence coded by n to identify
which case ought to apply and then take it from there.

127

128 HINTS FOR CHAPTERS 15–18

(3) Recall that a sentence is justa formula with no free variable;
that is, every occurrence of a variable is in the scope of a
quantifier.

(4) Each logical axiom is an instance of one of the schema A1–A8,
or is a generalization thereof.

16.4. In each case, use Definitions 16.1 and 16.2, together with the
appropriate definitions from first-order logic and the tools developed
in Problems 13.5 and 16.3.

(1) p∆q is recursive and Logical is primitive recursive, so. . .
(2) All χFormulas(n) has to do is check that every element of the

sequence coded by n is the code of a formula, and Formula

is already known to be primitive recursive.
(3) χInference(n) needs to check that n is the code of a sequence of

formulas, with the additional property that either ϕi is (ϕj →
ϕk) or ϕj is (ϕi → ϕk). Part of what goes into χFormula(n)
may be handy for checking the additional property.

(4) Recall that a deduction from ∆ is a sequence of formulas
ϕ1 . . . ϕk where each formula is either a premiss or follows from
preceding formulas by Modus Ponens.

(5) χConclusion(n,m) needs to check that n is the code of a de-
duction and that m is the code of the last formula in that
deduction.

They’re all primitive recursive if p∆q is, by the way.

16.5. (1) Use unbounded minimalization and the relations in
Problem 16.4 to define a function which, given n, returns the
nth integer which codes an element of Th(∆).

(2) If ∆ is complete, then for any sentence σ, either dσe or d¬σ
must eventually turn up in an enumeration of pTh(∆)q. The
other direction is really just a matter of unwinding the defini-
tions involved.

Hints for Chapter 17.

17.16. Every deduction from Γ can be replaced by a deduction of
Σ with the same conclusion.

17.14. If Σ were insconsistent it would prove entirely too much. . .

17.6. (1) Adapt Example 17.1.
(2) Use the 1-place function symbol S of LN .
(3) There is much less to this part than meets the eye. . .

HINTS FOR CHAPTERS 15–18 129

17.7. In each case, you need to use the given representing formula
to define the one you need.

17.8. String together the formulas representing g1, . . . , gm, and h
with ∧s and put some existential quantifiers in front.

17.9. First show that that < is representable in Th(A) and then
exploit this fact.

17.10. (1) n | m if and only if there is some k such that n ·k =
m.

(2) n is prime if and only if there is no ` such that ` | n and
1 < ` < n.

(3) pk is the first prime with exactly k − 1 primes less than it.
(4) Note that k must be minimal such that nk+1 - m.
(5) You’ll need a couple of the previous parts.
(6) Ditto.

17.11. Problem 17.10 has most of the necessary ingredients needed
here.

17.12. Problems 17.10 and 17.11 have most of the necessary ingre-
dients between them.

17.13. Proceed by induction on the numbers of applications of com-
position, primitive recursion, and unbounded minimalization in the re-
cursive definition f , using the previous results in Chapter 17 at the
basis and induction steps.

Hints for Chapter 18.

18.2. A is a finite set of sentences.

18.1. First show that recognizing that a formula has at most v1 as
a free variable is recursive. The rest boils down to checking that sub-
stituting a term for a free variable is also recursive, which has already
had to be done in the solutions to Problem 16.3.

18.3. Let ψ be the formula (with at most v1, v2, and v3 free) which
represents the function f of Problem 18.1 in Th(A). Then the formula
∀v3 (ψv2v1 → ϕv1

v3
) has only one variable free, namely v1, and is very

close to being the sentence σ needed. To obtain σ you need to substitute
SkO for a suitable k for v1.

18.4. Try to prove this by contradiction. Observe first that if Σ is
recursive, then pTh(Σ)q is representable in Th(A).

130 HINTS FOR CHAPTERS 15–18

18.5. (1) If Γ were recursive, you could get a contradiction to
the Incompleteness Theorem.

(2) If ∆ were complete, it couldn’t also be recursive.
(3) Note that A ⊂ Th(N).

18.6. Modify the formula representing the function ConclusionΣ

(defined in Problem 16.4) to get Con(Σ).

18.7. Try to do a proof by contradiction in three stages. First,
find a formula ϕ (with just v1 free) that represents “n is the code of
a sentence which cannot be proven from Σ” and use the Fixed-Point
Lemma to find a sentence τ such that Σ ` τ ↔ ϕ(Spτq). Second, show
that if Σ is consistent, then Σ 0 τ . Third — the hard part — show
that Σ ` Con(Σ)→ ϕ(Spτq). This leads directly to a contradiction.

18.8. Note that N |= A.

18.9. If the converse was true, A would run afoul of the (First)
Incompleteness Theorem.

18.10. Suppose, by way of contradiction, that pTh(N)q was defin-
able in N. Now follow the proof of the (First) Incompleteness Theorem
as closely as you can.

Appendices

APPENDIX A

A Little Set Theory

This apppendix is meant to provide an informal summary of the
notation, definitions, and facts about sets needed in Chapters 1–9. For
a proper introduction to elementary set theory, try [8] or [10].

Definition A.1. Suppose X and Y are sets. Then

(1) a ∈ X means that a is an element of (i.e. a thing in) the set
X.

(2) X is a subset of Y , written as X ⊆ Y , if a ∈ Y for every
a ∈ X.

(3) The union of X and Y is X ∪ Y = { a | a ∈ X or a ∈ Y }.
(4) The intersection of X and Y is X ∩ Y = { a | a ∈ X and a ∈

Y }.
(5) The complement of Y relative to X is X \ Y = { a | a ∈

X and a /∈ Y }.
(6) The cross product of X and Y is X × Y = { (a, b) | a ∈

X and b ∈ Y }.
(7) The power set of X is P(X) = {Z | Z ⊆ X }.
(8) [X]k = {Z | Z ⊆ X and |Z| = k } is the set of subsets of X of

size k.

If all the sets being dealt with are all subsets of some fixed set Z,
the complement of Y , Ȳ , is usually taken to mean the complement
of Y relative to Z. It may sometimes be necessary to take unions,
intersections, and cross products of more than two sets.

Definition A.2. Suppose A is a set and X = {Xa | a ∈ A } is a
family of sets indexed by A. Then

(1) The union of X is the set
⋃

X = { z | ∃a ∈ A : z ∈ Xa }.
(2) The intersection of X is the set

⋂
X = { z | ∀a ∈ A : z ∈ Xa }.

(3) The cross product of X is the set of sequences (indexed by A)∏
X =

∏
a∈AXa = { (za | a ∈ A) | ∀a ∈ A : za ∈ Xa }.

We will denote the cross product of a set X with itself taken n times
(i.e. the set of all sequences of length n of elements of X) by Xn.

Definition A.3. If X is any set, a k-place relation on X is a subset
R ⊆ Xk.

133

134 A. A LITTLE SET THEORY

For example, the set E = { 0, 2, 3, . . . } of even natural numbers is
a 1-place relation on N, D = { (x, y) ∈ N2 | x divides y } is a 2-place
relation on N, and S = { (a, b, c) ∈ N3 | a+ b = c } is a 3-place relation
on N. 2-place relations are usually called binary relations.

Definition A.4. A set X is finite if there is some n ∈ N such
that X has n elements, and is infinite otherwise. X is countable if it is
infinite and there is a 1-1 onto function f : N→ X, and uncountable if
it is infinite but not countable.

Various infinite sets occur frequently in mathematics, such as N (the
natural numbers), Q (the rational numbers), and R (the real numbers).
Many of these are uncountable, such as R. The basic facts about
countable sets needed to do the problems are the following.

Proposition A.1. (1) If X is a countable set and Y ⊆ X,
then Y is either finite or a countable.

(2) Suppose X = {Xn | n ∈ N } is a finite or countable family of
sets such that each Xn is either finite or countable. Then

⋃
X

is also finite or countable.
(3) If X is a non-empty finite or countable set, then Xn is finite

or countable for each n ≥ 1.
(4) If X is a non-empty finite or countable set, then the set of all

finite sequences of elements of X, X<ω =
⋃
n∈NX

n is count-
able.

The properly sceptical reader will note that setting up propositional
or first-order logic formally requires that we have some set theory in
hand, but formalizing set theory itself requires one to have first-order
logic.1

1Which came first, the chicken or the egg? Since, biblically speaking, “In the
beginning was the Word”, maybe we ought to plump for alphabetical order. Which
begs the question: In which alphabet?

APPENDIX B

The Greek Alphabet

A α alpha
B β beta
Γ γ gamma
∆ δ delta
E ε ε epsilon
Z ζ zeta
H η eta
Θ θ ϑ theta
I ι iota
K κ kappa
Λ λ lambda
M µ mu
N ν nu
O o omicron
Ξ ξ xi
Π π $ pi
P ρ % rho
Σ σ ς sigma
T τ tau
Υ υ upsilon
Φ φ ϕ phi
X χ chi
Ψ ψ psi
Ω ω omega

135

APPENDIX C

Logic Limericks

Deduction Theorem

A Theorem fine is Deduction,
For it allows work-reduction:
To show “A implies B”,
Assume A and prove B;
Quite often a simpler production.

Generalization Theorem

When in premiss the variable’s bound,
To get a “for all” without wound,
Generalization.
For civilization
Could use some help for reasoning sound.

Soundness Theorem

It’s a critical logical creed:
Always check that it’s safe to proceed.
To tell us deductions
Are truthful productions,
It’s the Soundness of logic we need.

Completeness Theorem

The Completeness of logics is Gödel’s.
’Tis advice for looking for mödels:
They’re always existent
For statements consistent,
Most helpful for logical labörs.

137

APPENDIX D

GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of
this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or
other functional and useful document “free” in the sense of freedom:
to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense.
It complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium,
that contains a notice placed by the copyright holder saying it can
be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and

139

140 D. GNU FREE DOCUMENTATION LICENSE

is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work contain-
ing the Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter sec-
tion of the Document that deals exclusively with the relationship of
the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose ti-
tles are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to
be designated as Invariant. The Document may contain zero Invari-
ant Sections. If the Document does not identify any Invariant Sections
then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that
the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable
copy, represented in a format whose specification is available to the
general public, that is suitable for revising the document straightfor-
wardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage sub-
sequent modification by readers is not Transparent. An image format
is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format,
SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG.

2. VERBATIM COPYING 141

Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the
machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Docu-
ment whose title either is precisely XYZ or contains XYZ in paren-
theses following text that translates XYZ in another language. (Here
XYZ stands for a specific section name mentioned below, such as “Ac-
knowledgements”, “Dedications”, “Endorsements”, or “History”.) To
“Preserve the Title” of such a section when you modify the Document
means that it remains a section “Entitled XYZ” according to this def-
inition.

The Document may include Warranty Disclaimers next to the no-
tice which states that this License applies to the Document. These
Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other im-
plication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, ei-
ther commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use tech-
nical measures to obstruct or control the reading or further copying of
the copies you make or distribute. However, you may accept compen-
sation in exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.

142 D. GNU FREE DOCUMENTATION LICENSE

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly
have printed covers) of the Document, numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document num-
bering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with
each Opaque copy a computer-network location from which the gen-
eral network-using public has access to download using public-standard
network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reason-
ably prudent steps, when you begin distribution of Opaque copies in
quantity, to ensure that this Transparent copy will remain thus accessi-
ble at the stated location until at least one year after the last time you
distribute an Opaque copy (directly or through your agents or retailers)
of that edition to the public.

It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of copies,
to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you re-
lease the Modified Version under precisely this License, with the Modi-
fied Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

4. MODIFICATIONS 143

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous ver-
sions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a
previous version if the original publisher of that version gives
permission.

B. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has
fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Mod-
ified Version, as the publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications

adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license no-

tice giving the public permission to use the Modified Version
under the terms of this License, in the form shown in the Ad-
dendum below.

G. Preserve in that license notice the full lists of Invariant Sec-
tions and required Cover Texts given in the Document’s license
notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and

add to it an item stating at least the title, year, new authors,
and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sen-
tence.

J. Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and
likewise the network locations given in the Document for pre-
vious versions it was based on. These may be placed in the
”History” section. You may omit a network location for a work
that was published at least four years before the Document it-
self, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”,
Preserve the Title of the section, and preserve in the section

144 D. GNU FREE DOCUMENTATION LICENSE

all the substance and tone of each of the contributor acknowl-
edgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equiv-
alent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section
may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorse-
ments” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appen-
dices that qualify as Secondary Sections and contain no material copied
from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it con-
tains nothing but endorsements of your Modified Version by various
parties–for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end
of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by
(or through arrangements made by) any one entity. If the Document
already includes a cover text for the same cover, previously added by
you or by arrangement made by the same entity you are acting on
behalf of, you may not add another; but you may replace the old one,
on explicit permission from the previous publisher that added the old
one.

The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released un-
der this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them

7. AGGREGATION WITH INDEPENDENT WORKS 145

all as Invariant Sections of your combined work in its license notice,
and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License,
and multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections Entitled “His-
tory” in the various original documents, forming one section Enti-
tled “History”; likewise combine any sections Entitled “Acknowledge-
ments”, and any sections Entitled “Dedications”. You must delete all
sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other sep-
arate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the copy-
right resulting from the compilation is not used to limit the legal rights
of the compilation’s users beyond what the individual works permit.
When the Document is included an aggregate, this License does not
apply to the other works in the aggregate which are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one half of the
entire aggregate, the Document’s Cover Texts may be placed on cov-
ers that bracket the Document within the aggregate, or the electronic

146 D. GNU FREE DOCUMENTATION LICENSE

equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may dis-
tribute translations of the Document under the terms of section 4. Re-
placing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and
all the license notices in the Document, and any Warrany Disclaimers,
provided that you also include the original English version of this Li-
cense and the original versions of those notices and disclaimers. In case
of a disagreement between the translation and the original version of
this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its Title
(section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and
will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain
in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new ver-
sions will be similar in spirit to the present version, but may differ in de-
tail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

Bibliography

[1] Jon Barwise (ed.), Handbook of Mathematical Logic, North Holland, Amster-
dam, 1977, ISBN 0-7204-2285-X.

[2] J. Barwise and J. Etchemendy, Language, Proof and Logic, Seven Bridges
Press, New York, 2000, ISBN 1-889119-08-3.

[3] Merrie Bergman, James Moor, and Jack Nelson, The Logic Book , Random
House, NY, 1980, ISBN 0-394-32323-8.

[4] C.C. Chang and H.J. Keisler, Model Theory , third ed., North Holland, Ams-
terdam, 1990.

[5] Martin Davis, Computability and Unsolvability , McGraw-Hill, New York, 1958;
Dover, New York, 1982, ISBN 0-486-61471-9.

[6] Martin Davis (ed.), The Undecidable; Basic Papers On Undecidable Propo-
sitions, Unsolvable Problems And Computable Functions, Raven Press, New
York, 1965.

[7] Herbert B. Enderton, A Mathematical Introduction to Logic, Academic Press,
New York, 1972.

[8] Paul R. Halmos, Naive Set Theory , Undergraduate Texts in Mathematics,
Springer-Verlag, New York, 1974, ISBN 0-387-90092-6.

[9] Jean van Heijenoort, From Frege to Gödel , Harvard University Press, Cam-
bridge, 1967, ISBN 0-674-32449-8.

[10] James M. Henle, An Outline of Set Theory , Problem Books in Mathematics,
Springer-Verlag, New York, 1986, ISBN 0-387-96368-5.

[11] Douglas R. Hofstadter, Gödel, Escher, Bach, Random House, New York, 1979,
ISBN 0-394-74502-7.

[12] Jerome Malitz, Introduction to Mathematical Logic, Springer-Verlag, New
York, 1979, ISBN 0-387-90346-1.

[13] Yu.I. Manin, A Course in Mathematical Logic, Graduate Texts in Mathemat-
ics 53, Springer-Verlag, New York, 1977, ISBN 0-387-90243-0.

[14] Roger Penrose, The Emperor’s New Mind , Oxford University Press, Oxford,
1989.

[15] Roger Penrose, Shadows of the Mind , Oxford University Press, Oxford, 1994,
ISBN 0 09 958211 2.

[16] T. Rado, On non-computable functions, Bell System Tech. J. 41 (1962), 877–
884.

[17] Raymond M. Smullyan, Gödel’s Incompleteness Theorems, Oxford University
Press, Oxford, 1992, ISBN 0-19-504672-2.

147

Index

(, 3, 24
), 3, 24
=, 24, 25
∩, 89, 133
∪, 89, 133
∃, 30
∀, 24, 25, 30
↔, 5, 30
∈, 133
∧, 5, 30, 89
¬P , 89
¬, 3, 24, 25, 89
∨, 5, 30, 89
|=, 10, 35, 37, 38
2, 10, 36, 37∏

, 133
`, 12, 43
\, 133
⊆, 133
×, 133
→, 3, 24, 25

A, 117
A1, 11, 42
A2, 11, 42
A3, 11, 42
A4, 42
A5, 42
A6, 42
A7, 42
A8, 43
An, 3
Con(Σ), 124
p∆q, 115
dom(f), 81
F , 7
f : Nk → N, 81

ϕ(Sm1 0, . . . , Smk0), 118
ϕxt , 42
L, 24
L1, 26
L=, 26
LF , 26
LG, 53
LN , 26, 112
LO, 26
LP , 3
LS, 26
LNT , 25
M, 33
N, 81, 134
N, 33, 112
N1, 117
N2, 117
N3, 117
N4, 117
N5, 117
N6, 117
N7, 117
N8, 117
N9, 117
Nk, 81
Nk \ P , 89
P, 133
P ∩Q, 89
P ∪Q, 89
P ∧Q, 89
P ∨Q, 89
πki , 85, 120
Q, 134
R, 134
ran(f), 81
Rn, 55
S, 6

149

150 INDEX

Sm0, 118
T , 7
Th, 39, 45
Th(Σ), 112
Th(N), 124
vn, 24
Xn, 133
[X]k, 133
Ȳ , 133

A, 90
α, 90
Codek, 97, 106
Comp, 98
CompM , 96
Conclusion∆, 115
Decode, 97, 106
Deduction∆, 115
Diff, 83, 88
Div, 90, 120
Element, 90, 120
Entry, 96
Equal, 89
Exp, 88
Fact, 88
Formulas, 115
Formula, 115
iN, 82
Inference, 115
IsPrime, 90, 120
Length, 90, 120
Logical, 115
Mult, 88
O, 83, 85, 120
Power, 90, 120
Pred, 83, 88
Premiss∆, 115
Prime, 90, 120
SIM, 106, 107
Sentence, 115
Sim, 98
SimM , 97
Step, 97, 106
StepM , 96, 106
Subseq, 90
Sub, 123
Sum, 83, 87
S, 83, 85, 120
TapePosSeq, 96, 106

TapePos, 96, 105
Term, 115

abbreviations, 5, 30
Ackerman’s Function, 90
all, x
alphabet, 75
and, x, 5
assignment, 7, 34, 35

extended, 35
truth, 7

atomic formulas, 3, 27
axiom, 11, 28, 39

for basic arithmetic, 117
N1, 117
N2, 117
N3, 117
N4, 117
N5, 117
N6, 117
N7, 117
N8, 117
N9, 117

logical, 43
schema, 11, 42

A1, 11, 42
A2, 11, 42
A3, 11, 42
A4, 42
A5, 42
A6, 42
A7, 42
A8, 43

blank cell, 67
blank tape, 67
bound variable, 29
bounded minimalization, 92
busy beaver competition, 83
n-state entry, 83
score in, 83

cell, 67
blank, 67
marked, 67
scanned, 68

characteristic function, 82
chicken, 134
Church’s Thesis, xi

INDEX 151

clique, 55
code

Gödel, 113
of sequences, 113
of symbols of LN , 113

of a sequence of tape positions, 96
of a tape position, 95
of a Turing machine, 97

Compactness Theorem, 16, 51
applications of, 53

complement, 133
complete set of sentences, 112
completeness, 112
Completeness Theorem, 16, 50, 137
composition, 85
computable

function, 82
set of formulas, 115

computation, 71
partial, 71

connectives, 3, 4, 24
consistent, 15, 47

maximally, 15, 48
constant, 24, 25, 31, 33, 35
constant function, 85
contradiction, 9, 38
convention

common symbols, 25
parentheses, 5, 30

countable, 134
crash, 70, 78
cross product, 133

decision problem, x
deduction, 12, 43
Deduction Theorem, 13, 44, 137
definable

function, 125
relation, 125

domain (of a function), 81

edge, 54
egg, 134
element, 133
elementary equivalence, 56
Entscheidungsproblem, x, 111
equality, 24, 25
equivalence

elementary, 56

existential quantifier, 30
extension of a language, 30

finite, 134
first-order

language for number theory, 112
languages, 23
logic, x, 23

Fixed-Point Lemma, 123
for all, 25
formula, 3, 27

atomic, 3, 27
unique readability, 6, 32

free variable, 29
function, 24, 31, 33, 35
k-place, 24, 25, 81
bounded minimalization of, 92
composition of, 85
computable, 82
constant, 85
definable in N, 125
domain of, 81
identity, 82
initial, 85
partial, 81
primitive recursion of, 87
primitive recursive, 88
projection, 85
recursive, x, 92
regular, 92
successor, 85
Turing computable, 82
unbounded minimalization of, 91
zero, 85

Gödel code
of sequences, 113
of symbols of LN , 113

Gödel Incompleteness Theorem, 111
First Incompleteness Theorem, 124
Second Incompleteness Theorem, 124

generalization, 42
Generalization Theorem, 45, 137
On Constants, 45
gothic characters, 33
graph, 54
Greek characters, 3, 28, 135

halt, 70, 78

152 INDEX

Halting Problem, 98
head, 67

multiple, 75
separate, 75

identity function, 82
if . . . then, x, 3, 25
if and only if, 5
implies, 10, 38
Incompleteness Theorem, 111

Gödel’s First, 124
Gödel’s Second, 124

inconsistent, 15, 47
independent set, 55
inference rule, 11
infinite, 134
Infinite Ramsey’s Theorem, 55
infinitesimal, 57
initial function, 85
input tape, 71
intersection, 133
isomorphism of structures, 55

John, 134

k-place function, 81
k-place relation, 81

language, 26, 31
extension of, 30
first-order, 23
first-order number theory, 112
formal, ix
natural, ix
propositional, 3

limericks, 137
logic

first-order, x, 23
mathematical, ix
natural deductive, ix
predicate, 3
propositional, x, 3
sentential, 3
logical axiom, 43

machine, 69
Turing, xi, 67, 69

marked cell, 67
mathematical logic, ix
maximally consistent, 15, 48

metalanguage, 31
metatheorem, 31
minimalization

bounded, 92
unbounded, 91

model, 37
Modus Ponens, 11, 43
MP, 11, 43

natural deductive logic, ix
natural numbers, 81
non-standard model, 55, 57

of the real numbers, 57
not, x, 3, 25
n-state

Turing machine, 69
entry in busy beaver competition,

83
number theory

first-order language for, 112

or, x, 5
output tape, 71

parentheses, 3, 24
conventions, 5, 30
doing without, 4

partial
computation, 71
function, 81

position
tape, 68

power set, 133
predicate, 24, 25
predicate logic, 3
premiss, 12, 43
primitive recursion, 87
primitive recursive

function, 88
recursive relation, 89

projection function, 85
proof, 12, 43
propositional logic, x, 3
proves, 12, 43
punctuation, 3, 25

quantifier
existential, 30
scope of, 30
universal, 24, 25, 30

INDEX 153

Ramsey number, 55
Ramsey’s Theorem, 55

Infinite, 55
range of a function, 81
r.e., 99
recursion primitive, 87
recursive

function, 92
functions, xi
relation, 93
set of formulas, 115

recursively enumerable, 99
set of formulas, 115

regular function, 92
relation, 24, 31, 33
binary, 25, 134
characteristic function of, 82
definable in N, 125
k-place, 24, 25, 81, 133
primitive recursive, 89
recursive, 93
Turing computable, 93
represent (in Th(Σ))

a function, 118
a relation, 119

representable (in Th(Σ))
function, 118
relation, 119

rule of inference, 11, 43

satisfiable, 9, 37
satisfies, 9, 36, 37
scanned cell, 68
scanner, 67, 75
scope of a quantifier, 30
score

in busy beaver competition, 83
sentence, 29
sentential logic, 3
sequence of tape positions

code of, 96
set theory, 133
Soundness Theorem, 15, 47, 137
state, 68, 69
structure, 33
subformula, 6, 29
subgraph, 54
subset, 133
substitutable, 41

substitution, 41
successor

function, 85
tape position, 71

symbols, 3, 24
logical, 24
non-logical, 24

table
of a Turing machine, 70

tape, 67
blank, 67
higher-dimensional, 75
input, 71
multiple, 75
output, 71
tape position, 68

code of, 95
code of a sequence of, 96
successor, 71

two-way infinite, 75, 78
Tarski’s Undefinability Theorem, 125
tautology, 9, 38
term, 26, 31, 35
theorem, 31
theory, 39, 45

of N, 124
of a set of sentences, 112

there is, x
TM, 69
true in a structure, 37
truth

assignment, 7
in a structure, 36, 37
table, 8, 9
values, 7

Turing computable
function, 82
relation, 93

Turing machine, xi, 67, 69
code of, 97
crash, 70
halt, 70
n-state, 69
table for, 70
universal, 95, 97

two-way infinite tape, 75, 78

unary notation, 82

154 INDEX

unbounded minimalization, 91
uncountable, 134
Undefinability Theorem, Tarski’s, 125
union, 133
unique readability

of formulas, 6, 32
of terms, 32

Unique Readability Theorem, 6, 32
universal

quantifier, 30
Turing machine, 95, 97

universe (of a structure), 33
UTM, 95

variable, 24, 31, 34, 35
bound, 29
free, 29

vertex, 54

witnesses, 48
Word, 134

zero function, 85

