Mathematics 3820H - Mathematics from medieval to modern times
 Trent University, Fall 2016
 Assignment \# π
 Equations and Poems
 Due on Tuesday, 1 November.

You may recall that Indian mathematicians wrote up much of their work in verse, some of which got a little whimsical. For example, here is a problem posed by Bhaskara (II) in a book dedicated to his daughter Lilavati:

The square root of half the number of bees in a swarm
Has flown out upon a jasmine bush;
Eight ninths of the swarm has remained behind;
And a female bee flies about a male who is buzzing inside a lotus flower;
In the night, allured by the flower's sweet odour, he went inside it
And now he is trapped!
Tell me, most enchanting lady, the number of bees.*

1. Restate the problem posed by Bhaskara as an equation and solve it. [2]

The Persian polymath Omar al-Khayyami developed geometric techniques for finding the positive real roots of cubic and quartic equations. In modern notation, his method for solving cubics can be described as follows:

To solve the cubic equation $x^{3}+a x^{2}+b^{2} x+b^{2} c=0$, intersect the hyperbola $y=\frac{b c}{x}+b$ with the circle $\left(x+\frac{1}{2}(a+c)\right)^{2}+y^{2}=\frac{1}{4}(a-c)^{2}$ and find the point of intersection other than $(-c, 0)$.
2. Verify that al-Khayyami's method for solving cubic equations actually does find positive real roots, if such exist. [4]
3. Restate al-Khayyami's method in whimsical verse. [4]

[^0]
[^0]: * This translation of Bhaskara's problem is given in The Heritage of Thales, by W.S. Anglin \& J. Lambeck, Springer Verlag, New York, 1995, ISBN 0-387-94544-X, p. 113.

