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1 Translation

I. There are some, king Gelon, who think that the number of the sand is in�nite in multitude; and I mean

by the sand not only that whi
h exists about Syra
use and the rest of Si
ily but also that whi
h is found in

every region whether inhabited or uninhabited. Again there are some who, without regarding it as in�nite,

yet think that no number has been named whi
h is great enough to ex
eed its multitude. And it is 
lear

that they who hold this view, if they imagined a mass made up of sand in other respe
ts as large as the

mass of the earth �lled up to a height equal to that of the highest of the mountains, would be many times

further still from re
ognizing that any number 
ould be expressed whi
h ex
eeded the multitude of the sand

so taken. But I will try to show you by means of geometri
al proofs, whi
h you will be able to follow, that,

of the numbers named by me and given in the work whi
h I sent to Zeuxippus, some ex
eed not only the

number of the mass of sand equal in magnitude to the earth �lled up in the way des
ribed, but also that of

a mass equal in magnitude to the universe. Now you are aware that `universe' is the name given by most

astronomers to the sphere whose 
entre is the 
entre of the earth and whose radius is equal to the straight

line between the 
entre of the sun and the 
entre of the earth. This is the 
ommon a

ount, as you have

heard from astronomers. But Aristar
hus of Samos brought out a book 
onsisting of some hypotheses, in

whi
h the premisses lead to the result that the universe is many times greater than that now so 
alled. His

hypotheses are that the �xed stars and the sun remain unmoved, that the earth revolves about the sun in

the 
ir
umferen
e of a 
ir
le, the sun lying in the middle of the orbit, and that the sphere of the �xed stars,

situated about the same 
entre as the sun, is so great that the 
ir
le in whi
h he supposes the earth to revolve

bears su
h a proportion to the distan
e of the �xed stars as the 
entre of the sphere bears to its surfa
e.

Now it is easy to see that this is impossible. For, sin
e the 
entre of the sphere has no magnitude, we 
annot


on
eive it to bear any ratio whatever to the surfa
e of the sphere. We must however take Aristar
hus to

mean this: Sin
e we 
on
eive the earth to be, as it were, the 
entre of the universe, the ratio whi
h the earth

bears to what we des
ribe as the \universe" is the same as the ratio whi
h the sphere 
ontaining the 
ir
le

in whi
h he supposes the earth to revolve bears to the sphere of the �xed stars. For he adapts the proofs of

his results to a hypothesis of this kind, and in parti
ular he appears to suppose the magnitude of the sphere

in whi
h he represents the earth as moving to be equal to what we 
all the \universe."

I say then that, even if a sphere were made up of sand as great as Aristar
hus supposes the sphere of the

�xed stars to be, I shall still prove that, of the numbers named in the Prin
iples, some ex
eed in multitude

the number of the sand whi
h is equal in magnitude to the sphere referred to, provided that the following

assumptions be made.

First, the perimeter of the earth is three hundred myriad stadia and no greater, though some have tried

to show, as you know, that this length is thirty myriad stadia. But I, surpassing this number and setting the

size of the earth as being ten times that evaluated by my prede
essors, suppose that its perimeter is three

hundred myriad stadia and not greater.

2. Se
ond, that the diameter of the earth is greater than the diameter of the moon and that the diameter

of the sun is greater than the diameter of the earth. My hypothesis is in agreement with most earlier

astronomers.

3. Third hypothesis: the diameter of the sun is thirty times larger than that of the moon and not

greater, even though among earlier astronomers Eudoxus tried to show it as nine times larger and Pheidias,
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my father, as twelve times larger, while Aristar
hus tried to show that the diameter of the sun lies between

a length of eighteen moon diameters and a length of twenty four moon diameters; but I, surpassing this

number as well, suppose, so that my proposition may be established without dispute, that the diameter of

the sun is equal to thirty moon diameters, and not more.

4. Finally, we state that the diameter of the sun is greater than the side of the polygon of one thousand

sides ins
ribed in the great 
ir
le of the universe. I make this hypothesis be
ause Aristar
hus found that

the sun appears as the seven hundred and twentieth part of the 
ir
le of the zodia
. While examining this

question I have, for my part tried in the following manner, to show with the aid of instruments, the angle

subtended by the sun, having its vertex at the eye. Clearly, the exa
t evaluation of this angle is not easy sin
e

neither vision, hands, nor the instruments required to measure this angle are reliable enough to measure it

pre
isely. But this does not seem to me to be the pla
e to dis
uss this question at length, espe
ially be
ause

observations of this type have often been reported. For the purposes of my proposition, it suÆ
es to �nd

an angle that is not greater than the angle subtended at the sun with vertex at the eye and to then �nd

another angle whi
h is not less than the angle subtended by the sun with vertex at the eye. A long ruler

having been pla
ed on a verti
al stand pla
ed in the dire
tion of where the rising sun 
ould be seen, and a

little 
ylinder was put verti
ally on the ruler immediately after sunrise. Then, the sun being at the horizon,

and 
ould be looked at dire
tly, the ruler was oriented towards the sun and the eye at the extremity of the

ruler. The 
ylinder being pla
ed between the sun and the eye, o

ludes the sun. The 
ylinder is then moved

further away from the eye and as soon as a small pie
e of the sun begins to show itself from ea
h side of the


ylinder, it is �xed. If the eye were really to see from one point, tangents to the 
ylinder produ
ed from the

end of the ruler where the eye was pla
ed would make an angle less than the angle subtended by the sun

with vertex at the eye. But sin
e the eyes do not see from a unique point, but from a 
ertain size, one takes

a 
ertain size, of round shape, not smaller than the eye and one pla
es it at the extremity of the ruler where

the eye had been pla
ed. If one produ
es tangents to this size and to the 
ylinder, the angle between these

lines is smaller than the angle subtended by the sun with vertex at the eye. And here is the way one �nds

the size not smaller to the eye: one takes two small thin 
ylinders of the same width, one white, the other

not, and one pla
es them in front of the eye, the white one at some distan
e, and the other one whi
h is not

white as 
lose to the eye as possible without tou
hing the fa
e. In this way, if the small 
ylinders 
hosen are

smaller than the eye, the 
ylinder neighboring the eye is en
ompassed in the visual �eld and the eye sees the

white 
ylinder. If the 
ylinders are mu
h smaller, the white one is 
ompletely seen. If they are not mu
h

smaller, one sees parts of the white one and parts of the one neighboring the eye. But if one 
hoose 
ylinders

of appropriate width one of them o

ludes the other without 
overing a larger spa
e. It is therefore 
lear

that the width of 
ylinders produ
ing this e�e
t is not smaller than the dimensions of the eye. As for the

angle not smaller than the angle subtending the sun with vertex at the eye, it was taken as follows: The


ylinder being pla
ed on the ruler at a distan
e whi
h blo
ks all of the sun, if one produ
es from the end of

the ruler where the eye is pla
ed tangent lines to the 
ylinder, the angle made by these lines is not smaller

than the angle subtended by the sun with vertex at the eye. A right angle being measured by the angles

taken in this way, the angle pla
ed at the point is found to be the one hundred and sixty fourth part of a

right angle, while the smallest angle is found to be greater to the two hundredth part of a right angle. It

is therefore 
lear that the angle subtended by the sun with vertex at the eye is also smaller than the one

hundred and sixty fourth part of a right angle, and greater than the two hundredth part of a right angle.
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With these measurements 
ompleted, one shows that the diameter of the sun is greater than the side of the

polygon with one thousand sides ins
ribed in the great 
ir
le of the universe. Let us imagine then a plane

passing through the 
entre of the sun, the 
entre of the earth and the eye at the instant when the sun �nds

itself a little above the horizon; that this plane 
uts the universe at the 
ir
le AB�, the earth at the 
ir
le

�EZ, and the sun at the 
ir
le �H . Let � be the 
entre of the earth, K the 
entre of the sun, and let �

be the eye; we produ
e from � the tangents ��, �� to the 
ir
le �H with 
onta
t points N and T , and

from � the tangents �M and �O with 
onta
t points X and P . Let A and B be the points of interse
tion

of the 
ir
le AB� and the lines �M and �O. Thus �K is greater than �K from the hypothesis that the

sun �nds itself above the horizon. If follows that the angle 
ontained between �� and �� is greater than

the angle 
ontained between �M and �O. But the angle 
ontained between �� and �� is greater than

the two hundredth part of a right angle sin
e it is equal to the angle subtended by the sun with vertex at

the eye; and 
onsequently, the angle 
ontained between �M and �O is less than the one hundred and sixty

fourth part of a right angle and the segment of the line AB is less than the 
hord of the 
ir
ular se
tor whi
h

is the six hundred and sixty �fth part of the 
ir
le AB�. But the perimeter of the polygon in question has

with the radius of the 
ir
le AB� a ratio less than fourty four to seven be
ause the ratio of the perimeter of

every polygon ins
ribed in a 
ir
le to the radius of the 
ir
le is less than the ratio fourty four to seven. You

know, in fa
t, that I have shown that in every 
ir
le the perimeter is greater, by a quantity smaller than

the seventh, than triple the diameter and that the perimeter of the ins
ribed polygon is smaller than this


ir
umferen
e. The ratio of BA to �K is thus less than the ratio of eleven to one thousand one hundred

and fourty eight. It follows that BA is smaller than a hundredth �K. But the diameter of the 
ir
le �H is

equal to BA sin
e half of �H , the segment �A, is equal to KP . The segments �K and �A are in fa
t equal

and from their endpoints perpendi
ulars are produ
ed of equal angle. It is thus 
lear that the diameter of

the 
ir
le �H is less than the hundredth part of �K. Moreover, the diameter E�� is less than the diameter

of the 
ir
le �H sin
e the 
ir
le �EZ is less than the 
ir
le �H . If follows that the sum of �� and K� is

less than the hundredth part of �K so that the ratio of �K to �K is less than the ratio of one hundred to

ninety nine. And as long as �� is less than �T , the ratio of �P to �T is less than the ratio of one hundred

to ninety nine. But sin
e in the right triangles �KP and �KT the sides KP and KT are equal and the

sides �P and �T unequal, �P being larger, the ratio of the angle 
ontained between the sides �T and �K

to the angle 
ontained between the �P and �K is greater than the ratio of �K to �K, but less than the

ratio of �P to �T . For if in two right triangles two of the sides 
ontaining the right angle are equal and the

two others unequal, then the larger angle opposite the unequal sides has to the smaller of these angles a ratio

greater than the ratio of the greater hypotenuse to the smaller, but smaller than the ratio of the greater side

to the right angle to the smaller. As a 
onsequen
e, the ratio of the angle 
ontained between �� and ��

to the angle 
ontained between �O and �M is less than the ratio of �P to �T whi
h is itself less than the

ratio of one hundred to ninety nine. It follows that the ratio of the angle 
ontained between �� and �� is

greater than the two hundredth part of a right angle, the angle 
ontained between �M and �O is greater

than ninety nine twenty thousandths of a right angle; and as a 
onsequen
e, this angle is greater than one

two hundred and third of a right angle. The segment BA is thus greater than the 
hord of the se
tor whi
h

is a eight hundred and twelfth part of the 
ir
le AB�. But it is to the line segment AB that the diameter

of the 
ir
le is equal to. It is therefore 
lear that the diameter of the 
ir
le is greater than the side of the

polygon of one thousand sides.
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II. These relations being given, one 
an also show that the diameter of the universe is less than a line

equal to a myriad diameters of the earth and that, moreover, the diameter of the universe is less than a

line equal to one hundred myriad myriad stadia. As soon as one has a

epted the fa
t that the diameter

of the sun is not greater than thirty moon diameters and that the diameter of the earth is greater than the

diameter of the moon, it is 
lear that the diameter of the sun is less than thirty diameters of the earth. As

we have also shown that the diameter of the sun is greater than the side of the polygon of one thousand

sides ins
ribed in the great 
ir
le of the universe, it is 
lear that the perimeter of the indi
ated polygon of

one thousand sides is less than one thousand diameters of the sun. But the diameter of the sun is less than

thirty earth diameters so it follows that the perimeter of the polygon of one thousand sides is less than thirty

thousand earth diameters. Given that the perimeter of the polygon of one thousand sides is less than thirty

thousand earth diameters and greater than three diameters of the universe{we have shown in fa
t that in

every 
ir
le the diameter is less than one third the perimeter of any regular polygon ins
ribed in the 
ir
le

for whi
h the number of sides is greater than that of the hexagon{the diameter of the universe is less than a

myriad earth diameters. One has thus shown that the diameter of the universe is less than a myriad earth

diameters; that the diameter of the universe is less than one hundred myriad myriad stadia, whi
h 
omes

out of the following argument; sin
e, in fa
t, we have supposed that the perimeter of the earth is not greater

than three hundred myriad stadia and that the perimeter of the earth is greater than triple the diameter

be
ause in every 
ir
le the 
ir
umferen
e is greater than triple the diameter, it is 
lear that the diameter

of the earth is less than one hundred myriad stadia. Given that the diameter of the universe is less than a

myriad earth diameters it is 
lear that the diameter of the world is less than one hundred myriad myriad

stadia. These are my hypotheses regarding sizes and distan
es. Here now is what I assume about the subje
t

of sand: if one has a quantity of sand whose volume does not ex
eed that of a poppy{seed, the number of

these grains of sand will not ex
eed a myriad and the diameter of the grains will not be less than a fourtieth

of a �nger{breadth. I make these hypotheses following these observations: poppy seeds having been pla
ed

on a polished ruler in a straight line in su
h a way that ea
h tou
hes the next, twenty �ve seeds o

upied a

spa
e greater than one �nger{breadth. I will suppose that the diameter of the grains is smaller and to be

about a fourtieth of a �nger{breadth for the purpose of removing any possibility of 
riti
izing the proof of

my proposition

III. These are thus my hypotheses; but I think it useful to explain myself about the naming of numbers

so that those readers, not having been able to get hold of my book addressed to Zeuxippus, may not be

thrown o� by the absen
e in this book of any indi
ation of the subje
t of this nomen
lature. It so happens

that tradition has given to us the name of numbers up to a myriad and we distinguish enough numbers

surpassing a myriad by enumerating the number of myriads until a myriad myriad. We will therefore 
all

�rst numbers those whi
h, a

ording to this nomen
lature, go up to a myriad myriad. We will 
all units

of se
ond numbers the myriad myriad of �rst numbers and we will 
ount among se
ond number units and,

starting with units, tens, hundreds, thousands, myriads, until a myriad myriad. We will 
all on
e again 
all

third numbers a myriad myriad of se
ond numbers and we will 
ount among third numbers, starting with

units, tens, hundreds, thousands, myriads, until the myriad myriad. In the same way we will 
all units of

fourth numbers a myriad myriad of third numbers, units of �fth numbers a myriad myriad of fourth numbers,

and 
ontinuing in this way the numbers will be distinguishable until the myriad myriad of of myriad myriad

numbers.
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Numbers named in this way 
ould 
ertainly suÆ
e but it is possible to go still further. Let us in fa
t


all numbers of the �rst period the numbers given up to this point and units of �rst numbers of the se
ond

period the last number of the �rst period. Furthermore, 
all the unit of se
ond numbers of the se
ond period

the myriad myriad of �rst numbers of the se
ond period. In the same way, the last of these numbers will be


alled the unit of third numbers of the se
ond period, and 
ontinuing in this way, progressing through the

numbers of the se
ond period will have their names up to the myriad myriadth of myriad myriad numbers.

The last number of the se
ond period will be in turn 
alled the unit of the �rst numbers of the third period,

and so forth until a myriad myriad units of myriad myriadth numbers of the myriad myriadth period.

These numbers having been named, if numbers are ordered by size starting from unity and if the number


losest to unity is the tens, the �rst eight of these in
luding the unity will belong to the numbers 
alled �rst

numbers, the following eight numbers 
alled se
ond, and the others in the same way by the distan
e of their

o
tad of numbers to the �rst o
tad of numbers. The eighth number of the �rst o
tad is thus one thousand

myriads and the �rst number of the se
ond o
tad, sin
e it multiplies by ten the number pre
eding it, will

be a myriad myriad and this number is the unit of the se
ond numbers. The eight number of the se
ond

o
tad is one thousand myriad of se
ond numbers. The �rst number of the third o
tad will on
e again be,

as it multiplies by ten the pre
eding number, a myriad myriad of se
ond numbers, the unity of the third

numbers. It is 
lear that the same will hold as indi
ated for any o
tad.

It is useful to know what follows. If numbers are in proportion starting from unity and some whi
h

are in the same proportion are multiplied to ea
h other, then the produ
t will be in
reased from the larger

of the fa
tors by as many numbers as the smaller number is far in proportion to unity and it will be

in
reased from unity by the sum minus one of the distan
e of the numbers away from unity. In fa
t, let

A;B;�;�; E; Z;H;�; I;K;� be in proportion starting from unity, and let A be unity. Multiply � by �

and let X be the produ
t. Let us take in the proportion � whose distan
e to � holds as many numbers as

the distan
e from � to unity. It must be shown that X equals �. If, among the numbers in proportion,

the distan
e from � to A 
ounts as many numbers as that from � to �, the ratio of � to A equals the

ratio of � to �. But � is the produ
t of � by A from whi
h it follows that � is the produ
t of � by �,

so � is equal to X . It is therefore 
lear that the produ
t is in the proportion and that its distan
e to the

largest fa
tor 
ounts as many numbers as the distan
e of the smaller fa
tor to unity. But it is also 
lear that

this produ
t is in
reased, from unity, by the sum minus one, of the distan
es of the numbers � and � to

unity; for A;B;�;�; E; Z;H;� are the numbers by whi
h � is in
reased from unity, and I;K;� are, up to

a number, those by whi
h � is in
reased from unity; by adding � one gets the sum of the distan
es.

IV. The pre
eding being in part assummed and in part proved, I will now prove my proposition. As we

have assumed that the diameter of a poppy{seed is not smaller than a fourtieth of a �nger{breadth, it is


lear that the volume of the sphere having diameter one �nger{breadth does not ex
eed that of sixty four

thousand poppy{seeds; for this number indi
ates how many times it is the multiple of the sphere having as

diameter one fourtieth of a �nger{breadth; it has in fa
t been shown that spheres are related to ea
h other

as the 
ubes of their diameters. As we have also assumed that the number of grains of sand 
ontained in

one poppy{seed does not ex
eed a myriad, it is 
lear that, if the sphere having diameter one �nger{breadth

were �lled with sand, the number of grains would not ex
eed sixty four thousand myriads. But this number

represents six units of se
ond numbers in
reased by four thousand myriad of �rst numbers, and is thus less

than ten units of se
ond numbers. The sphere with diameter one hundred �nger{breadths is equivalent to
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one hundred myriad spheres of diameter one �nger{breath, sin
e spheres are related to ea
h other as the


ubes of their diameters. If one now had a sphere �lled with sand of the size of the sphere of diameter one

hundred �nger{breadths, it is 
lear that the number of grains of sand would be less than the produ
t of

ten myriad se
ond numbers and one hundred myriads. But sin
e ten units of se
ond numbers make up the

tenth number starting from unity in the proportional sequen
e of multiple ten, and the one hundred myriads

of the seventh number starting from unity in the same proportional sequen
e, it is 
lear that the number

obtained will be the sixteenth starting from unity in the same proportional sequen
e. For we have shown

that the distan
e of this produ
t to unity is equal to the sum of, minus one, of the distan
e from unity of

its two fa
tors. From these sixteen numbers the �rst eight are among, with unity, the numbers 
alled �rst

numbers, the following eight are part of the se
ond numbers, and the last of these is one thousand myriad

se
ond numbers. It is now evident that the number of grains of sand whose volume is equal to one hundred

�nger{breadths is less than one thousand myriad se
ond numbers. Similarly, the volume of the sphere of

diameter one myriad �nger{breadths is one hundred myriad times the volume of the sphere of diameter one

hundred �nger{breadths. If one now had a sphere, �lled with sand, of the size of the sphere with diameter

a myriad �nger breadths, it is 
lear that the number of grains of sand would be less than the produ
t of

one thousand myriads of se
ond numbers and one hundred myriads. But sin
e one thousand myriad se
ond

numbers are the sixteenth number starting from unity in the proportional sequen
e and that one hundred

myriad are the seventh number starting from unity in the same proportional sequen
e, it is 
lear that the

produ
t will be the twenty se
ond number starting from unity in the same proportional sequen
e. Of these

twenty two numbers, the �rst eight, with unity, are among the numbers 
alled �rst numbers, the following

eight are among the numbers 
alled se
ond, and the six remaining numbers are 
alled third numbers, the last

of whi
h being ten myriad third numbers. It is then 
lear that the number of grains of sand whose volume

is equal to a sphere of diameter of a myriad �nger{breadths is less than ten myriads of third numbers. And

sin
e the sphere with diameter one stade is smaller than the sphere with diameter a myriad �nger{breadths,

it is also 
lear that the number of grains of sand 
ontained in a volume equal to a sphere with diameter one

stade is less than ten myriad third numbers. Similarly, the volume of a sphere of diameter one hundred stadia

is one hundred myriad times the volume of a sphere of diameter one stade. If one now had a sphere, �lled

with sand, of the size of the sphere with diameter one hundred stadia, it is evident that the number of grains

of sand would be less than the produ
t of ten myriad third numbers with one hundred myriad. And sin
e ten

myriad third numbers are the twenty se
ond numbers, starting from unity, in the proportional sequen
e, and

that one hundred myriad are the seventh number starting from unity in the same proportional sequen
e, it

is 
lear that the produ
t will be the twenty eighth number starting from unity in the proportional sequen
e.

Of these twenty eight numbers, the �rst eight, with unity, are part of the numbers 
alled �rst numbers, the

following eight are se
ond numbers, the following eight are third numbers, and the four remaining are 
alled

fourth, the last being one thousand units of fourth numbers. It is then evident that the number of grains of

sand whose volume equals that of a sphere of diameter a hundred stadia is less than one thousand units of

fourth numbers. Similarly, the volume of a sphere of diameter a myriad stadia is one hundred myriad times

the volume of a sphere having diameter one hundred stadia. If one then had a sphere, �lled with sand, of the

size of a sphere of diameter a myriad stadia, it is 
lear that the number of grains of sand would be less than

the produ
t of one thousand units of fourth numbers with one hundred myriad. Just as one thousand units

of fourth numbers represent the twenty eighth number, starting from unity, in the proportional sequen
e,
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and one hundred myriad the seventh number in the proportional sequen
e, starting from unity, of the same

proportional sequen
e, it is 
lear that their produ
t will be, in the same proportional sequen
e, with unity,

the thirty fourth number starting form unity. But of these thirty four numbers, the �rst eight, with unity,

are among those numbers 
alled �rst numbers, the following eight among se
ond numbers, the following

eight among third numbers, the following eight among fourth numbers, and the two remaining among �fth

numbers, the last of these being ten units of �fth numbers. It is thus 
lear that the number of grains of sand

whose volume is equal to that of a sphere having diameter a myriad stadia will be smaller than ten units of

�fth numbers. And similarly, the volume of a sphere of diameter one hundred myriad stadia is one hundred

myriad times the volume of a sphere of diameter a myriad stadia. If one had then had a sphere, �lled with

sand, of the size of the sphere with diameter one hundred myriad stadia, it is 
lear that the number of grains

of sand would be smaller than the produ
t of ten units of �fth numbers and one hundred myriads. As the ten

units of �fth numbers represent the thirty fourth number starting from unity in the proportional sequen
e,

and one hundred myriads the seventh number starting from unity in the same proportional sequen
e, it is


lear that the produ
t will be, in the same proportional sequen
e, the fourtieth number starting from unity.

But of these fourty numbers, the �rst eight, with unity, are among the numbers 
alled �rst numbers, the

eight following are se
ond numbers, the eight following are third numbers, the eight following are fourth

numbers, the eight following are �fth numbers, the last of these being one thousand myriad �fth numbers.

It is therefore 
lear that the number of grains of sand whose volume is equal to that of a sphere of diameter

one hundred myriad stadia is less than one thousand myriad �fth numbers. But the volume of a sphere of

diameter a myriad myriad stadia is one hundred myriad times the sphere of diameter one hundred myriad

stadia. Thus, if one had a sphere, �lled with sand, of the size of a sphere of diameter a myriad myriad

stadia, it is 
lear that the number of grains of sand would be less than the produ
t of one thousand myriad

�fth numbers by one hundred myriads. However, sin
e one thousand myriad �fth numbers represent the

fourtieth number, starting from unity, of the proportional sequen
e, and one hundred myriad the seventh

number starting from unity in the same proportional sequen
e, it is 
lear that the produ
t will be the fourty

sixth number starting from unity. Of these fourty six numbers, the �rst eight, with unity, are part of the

numbers 
alled �rst numbers, the eight following se
ond numbers, the eight following third numbers, the

eight following fourth numbers, the eight following �fth numbers, and the six left over are numbers 
alled

sixth, the last among being ten myriads of sixth numbers. It is thus 
lear that the number of grains of

sand whose volume is equal to a sphere of diameter a myriad myriad stadia is smaller than ten myriad sixth

numbers. But the volume of a sphere of diameter one hundred myriad myriad stadia is one hundred myriad

times the multiple of a sphere of diameter a myriad myriad stadia. Thus, if one had a sphere, �lled with sand,

of the size of a sphere of diameter one hundred myriad myriad stadia, it is 
lear that the number of grains of

sand would be smaller than the produ
t of ten myriad sixth numbers by one hundred myriad. But, sin
e ten

myriad sixth numbers represent the fourty sixth number, starting from unity, in the proportional sequen
e,

and one hundred myriad the seventh number starting from unity in the same proportional sequen
e, it is 
lear

that the produ
t will be the �fty se
ond number starting in the same proportional sequen
e. But of these

�fty two numbers, the �rst fourty eight, with unity, belong to numbers 
alled �rst numbers, se
ond numbers,

third, fourth, �fth, and sixth, and the the four remaining are among numbers 
alled seventh numbers, the

last of them being one thousand units of seventh numbers. It is thus 
lear that the number of grains of sand

in a volume equal to a sphere whose volume is equal to that of a sphere of diameter one hundred myriad
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myriad stadia is smaller than one thousand units of seventh numbers.

As we shown that the diameter of the universe is less than one hundred myriad myriad stadia, it is 
lear

that the number of grains of sand �lling a volume equal to that of the universe is itself less than one thousand

units of seventh numbers. We have thus shown that the number of grains of sand �lling a volume equal to

that of the universe, as the majority of astronomers understand it, is one thousand units of seventh numbers;

we will now show that even the number of grains of sand �lling a volume equal to the sphere as large as

Artistar
hus proposed for the �xed stars, is smaller than one thousand myriad eighth numbers. As we have

assumed, in fa
t, that the ratio of the earth to what we 
ommonly 
all the universe is equal to the ratio of

this universe to the sphere of �xed stars as proposed by Aristar
hus, the two spheres have the same ratio

to ea
h other. But it has been shown that that the diameter of the universe is less than a length a myriad

times the multiple of the diameter of the earth. It is thus 
lear that the diameter of the sphere of �xed stars

is itself smaller to a length a myriad times the diameter of the universe. But sin
e the sphere have the ratio

among themselves of their diameters, it is 
lear that the sphere of �xed stars, as Aristar
hus proposes, is less

than a volume a myriad myriad myriad times a multiple the volume of the universe. But we have shown

that the number of grains of sand �lling a volume equal to that of the world is less than a thousand units

of seventh numbers; it is therefore evident that that if a sphere, as large as Aristar
hus supposes that of the

�xed stars to be, were to be �lled with sand, the number of grains of sand would be less than the produ
t

of one thousand units [of seventh numbers℄ by a myriad myriad myriad. And sin
e one thousand units of

seventh numbers represent the �fty se
ond number in the re
ipro
al sequen
e starting from unity, and a

myriad myriad myriads the thirteenth number starting from unity in the same proportional sequen
e, it is


lear that the produ
t will be the sixty fourth number starting from unity in the same proportional sequen
e;

but this number is the eighth of the eight numbers, whi
h is one thousand myriads of eight numbers.

It is therefore obvious that the number of grains of sand �lling a sphere of the size that Aristar
hus lends

to the sphere of �xed stars is less than one thousand myriad eighth numbers.

I 
on
eive, King Gelon, that among men who do not have experien
e of mathemati
s, su
h a thing

might appear in
redible. On the other hand, those who know of su
h matters and have thought about the

distan
es and sizes of the earth, the sun, the moon, and the universe in its entirety will a

ept them due to

my argument, and that is why I believed that you might enjoy having brought it to your attention.
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2 Introdu
tion

\The Sand Re
koner" might be the best introdu
tion to an
ient s
ien
e:

1. It is addressed to the King of Syra
use, so may be the �rst resear
h{expository paper ever written.

2. In its goal of addressing \innumera
y", it is relevant to a modern audien
e.

3. It 
ontains many details about an
ient astronomy, but also motivates them by presenting them in the


ontext of solving a spe
i�
 problem.

4. The �rst known example of an astronomi
al experiment.

5. The �rst example of psy
hophysi
s, the study of human beings as measuring instruments.

6. Fa
es the problem of naming and manipulating large numbers without using modern notation.

The paper addresses the problem of \innummera
y" in an
ient Gree
e, in parti
ular, they did not believe

that there were numbers great enough to des
ribe the amount of sand. This belief was 
ommon and \sand"

was synonymous with \un
ountable." In order to re
tify this situation, Ar
himedes wrote the paper to a

non{mathemati
al audien
e, King Gelon, King of Syra
use, and the paper 
an therefore be des
ribed as the

�rst resear
h expository paper.

Ar
himedes sets for himself the task to name a number larger than the number of sand not just on a

bea
h, or even on all of the earth, but the idealized question of naming a number that would be larger than

the number of sand that 
ould �ll up the whole universe.

The reason for this generalization is 
lear. By taking the largest amount of sand possible, one 
an give

an upper bound that will apply to any possible amount of sand, and thus solve the problem 
ompletely.

In order to solve the problem, Ar
himedes needs to make some physi
al assumptions, and then apply

mathemati
al te
hniques to them. The paper thus has two themes: (a) physi
al assumptions based on

observational data, (b) mathemati
al analysis.

Sin
e Ar
himedes was a mathemati
ian, the mathemati
al analysis is 
ompletely rigorous, but this is


learly not possible for the physi
al part of the paper. This part of the paper is also written in two di�erent

styles. The experiments that Ar
himedes is able to perform himself are analyzed with extreme pre
ision,

mu
h more than the other data will allow, while experiments that he merely reports are overestimated by a

fa
tor of 10. This last strategy is su

essful in that he a
tually overestimates the distan
e to the sun, even

though 
ontemporary estimates of the distan
e to the sun were mu
h smaller and estimating this distan
e

is quite diÆ
ult.

In trying to estimate the amount of sand that 
ould �ll the universe, Ar
himedes must �rst address the

de�nition of the universe in order to estimate its size. Ar
himedes states that, for the purposes of the paper,

he will adopt the helio
entri
 theory of Aristar
hus of Samos. The reason for this is that Ar
himedes, in

order not to have his result superseded, needed to �nd the largest model of the universe. He 
hose the

helio
entri
 theory be
ause it requires the stars to be mu
h further away in order to avoid stellar parallax.

This has great histori
al interest be
ause it is one of the only referen
es to Aristar
hus' helio
entri
 theory,

as the work itself is lost.
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Ar
himedes notes that Aristar
hus was not pre
ise about how far the stars are from the earth, so he

makes the assumption that the distan
e to the stars is in the same to the radius of the earth's orbit as

the radius of the earth's orbit around the sun is to the radius of the earth. The reasoning behind su
h an

assumption is that sin
e observers on earth do not noti
e the sun moving lo
ally due to the earth's rotation

(solar parallax) the ratio of the earth's radius to the distan
e to the sun is large enough to make su
h an

e�e
t unobservable. It follows that putting the stars' distan
e with respe
t to the earth's rotation in the

same ratio should ex
lude any apparent motion of the stars. In e�e
t, Ar
himedes is saying that stellar

parallax equals solar parallax. Symboli
ally, this would be written as

r

u

d

s

=

d

s

r

e

;

where r

u

is the radius of the universe, i.e., the distan
e to the stars, d

s

is the distan
e to the sun, and r

e

is

the radius of the earth. In order to 
ompute r

u

, Ar
himedes must give values for r

e

and d

s

, so he pro
eeds

to quote estimates of the earth's radius, and in order to estimate d

s

, the relative sizes of the earth, moon,

and sun.

The 
ontemporary estimates for the 
ir
umferen
e of the earth were quite a

urate, for example, Eratos-

thenes' 
elebrated measurement of yielded approximately 25,000 miles whi
h is within 1,000 miles of the

a
tual �gure. Sin
e Ar
himedes has not performed this experiment, he overestimates this by a fa
tor of ten

and arrive at a radius of about 40,000 miles??.

The problem of estimating the distan
e to the sun is quite diÆ
ult and a

urate estimates were not

obtained until the 18th 
entury. The method that Ar
himedes uses is to �rst estimate the size of the moon

relative to the earth, then the size of the sun relative to the moon. On
e an estimate of the size of the sun

is given, then the distan
e to the sun 
an be estimated by measuring the angular size of the sun, as seen on

earth, and using some equivalent form of a trigonometri
 formula.

Aristar
hus of Samos gave a method for estimating the sizes of the moon and sun, but his estimate of

the sun is mu
h smaller than the a
tual value. This method �rst estimates the size of the moon, whi
h 
an

be done fairly well by estimating the size of the earth's shadow on the moon during a lunar e
lipse. This

shows that the moon is at least 1/3 the size of the earth. Next, Aristar
hus looked at the angle that the

moon and sun make when the moon is exa
tly half illuminated by the sun. In modern notation, if this angle

is �, then d

m

=d

s

= 
os �, where d

m

is the distan
e to the moon. Now the a
tual value of � is 89

Æ

50

0

, whi
h is

indistinguishable from 90

Æ

using an
ient te
hniques, but more importantly, de
iding when the moon is half

full is too diÆ
ult to make this measurement with anything 
lose to this level of pre
ision. However, one 
an


on
lude that d

s

> 20d

m

but Ar
himedes overestimates this to be d

s

> 30d

m

. Sin
e the sun and moon have

the same angular diameter with respe
t to a terrestrial observer, as seen during solar e
lipses, it follows that

r

s

> 30r

m

> 30=3r

e

= 10r

e

, and the radius of the sun is at least 400,000 miles.

The next step is to 
ompute the angular size of the sun. This is done with extreme 
are by Ar
himedes

himself. Thus, he is very 
areful to note that in measuring the angular size of the sun one should take into

a

ount the size of the eye, as this will a�e
t the answer slightly. This is of interest as it is the �rst example

of the s
ien
e of psy
hophysi
s, i.e., analyzing the human body as an instrument. Furthermore, he also takes

into a

ount solar parallax, in other words, the fa
t that his estimate of the distan
e to the sun is taken from

a measurement on the surfa
e of the earth, while the a
tual distan
e that he is interested in is taken from

the 
entre of the earth. This is also the �rst known example of solar parallax being taken into a

ount. As
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an example of the in
onsisten
ies of the paper, note that this adjustment for solar parallax 
ontradi
ts his

previous impli
it assumption that solar parallax is negligible.

From this one 
an say that apart from the overestimates for the size of the earth and sun, and the distan
e

from the earth to the sun, Ar
himedes is a
tually 
omputing the order of magnitude of the answer. In other

words, ex
ept for two steps in the 
omputation, the estimate will be 
orre
t within a fa
tor of ten.

On
e Ar
himedes has 
olle
ted the physi
al data, he then develops a system for naming numbers, sin
e

the 
ontemporary Greek system only went up to ten thousand (a myriad) and naming number larger than

ten million (a myriad myriad) was 
umbersome. His method is to essentially use base 10,000 whi
h allows

him to name powers of 10,000 up to 10000

10000

. Ar
himedes then 
onsiders the sequen
e of powers of 10

and essentially states the formula 10

a

10

b

= 10

a+b

.

The paper ends with a very longwinded des
ription of how to use the estimates of the size of a grain of

sand, the earth, and the distan
e from the earth to the sun in order to get the upper bound 10

63

for the

number of grains of sand in the universe. The main reason for the length is that Ar
himedes only allows

himself to use the law of exponents in the form 10

a

10

6

= 10

a+6

.

Thus instead of 
omputing how many diameters of a grain of sand will be an upper bound for the diameter

of the 
osmos then 
ubing this number to �nd the ratio of volumes, he 
onsiders separately ea
h in
rease in

diameter by a fa
tor of one hundred = 10

2

, and then multiplies the ratio of volumes by 100 myriad (= 10

6

).

3 The problem

The Greek title of the paper is  ������� meaning having to do with sand [26℄. The Latin translation is

Arenarius whi
h also means having to do with sand, but 
an be understood as meaning arithmeti
, as these

were done on sand. From this perspe
tive, the Latin title might be the most appropriate.

The paper is addressed to King Gelon, son of King Hieron, who were 
o{rulers of Syra
use, the 
ity where

Ar
himedes lived, so one way of estimating the date of the paper would be to know when Gelon a

eded to

the throne.

Ar
himedes refers to the belief among his 
ontemporaries that sand was in�nite or un
ountable. This is


on�rmed in a passage from Pindar's Olympi
 Ode II [28℄: \. . . sand es
apes 
ounting" ( ���o� �����o�

���������
��). Moreover, the word  �����o��o� (sand{hundred) was used to denote a very large number,

as in the modern English word \zillion." The exaggerated form  �����o��
��
��o� (sand dune hundred)

appears in the opening lines of Aristophanes' play The Ar
hanians [6, p.6℄ a typi
al English translation being

[7, p. 101℄:

\How often have I 
hewed my heart with rage! My pleasures? Very few; in fa
t just four. My

pains? Far more than all the grains of sand."

A similar statement appears in the Iliad IX, 385 [21℄: \Not if his gifts outnumbered the sea sands or all

the dust grains in the world would Agam�emnon ever appease me. . . "

The un
ountability of sand also appears 21 times in The Bible [33, p. 1179℄. For example, in Genesis

32:12: \And thou saidst, I will surely do thee good, and make thy seed as the sand of the sea, whi
h 
annot

be 
ounted for multitude." It is a 
omment on the la
k of impa
t of Ar
himedes' work that similar 
omments

12



appear in the New Testament, e.g., Hebrews 11:12: \So many as the stars of the sky in multitude, and as

the sand whi
h is by the seashore innumerable."

Given the question of 
ounting grains of sand, Ar
himedes immediately generalizes this question not just

to the harder problem of 
ounting the sand that 
an be seen on a single bea
h, or in Si
ily, but to the entire

surfa
e and volume of the earth.

The language of Ar
himedes uses to express this is to 
onsider \a mass made up of sand. . . as large as the

mass of the earth, in
luding in it all the seas and hollows of the earth �lled up to the height of the largest

mountain." In this way, Ar
himedes de�nes a sphere and its interior with radius the height of the highest

mountain. This passage is slightly ambiguous sin
e the term \�lled{up" 
an be interpreted as �lling{up with

sand.

However, Ar
himedes does not stop with this harder problem but immediately goes on to �nd the largest

possible amount of sand. His obje
t seems to avoid having his estimate superseded by a larger example.

This 
ompetitive approa
h is also seen in his sending in
omplete or false proofs as a test to his readers and

the (highly spe
ulative) explanations that the diÆ
ulty of his Cattle Problem was in response to having his

works superseded by Apollonius [35℄.

4 Physi
al assumptions

4.1 The size of the universe

In order to �ll the universe with sand, Ar
himedes has to give a 
on
rete de�nition of the universe. In the

paper, he 
laims that astronomers de�ned the universe to be the sphere with 
enter at the 
entre of the

earth and radius the distan
e from the 
entre of the earth to the 
entre of the sun.

Now, sin
e the stars are so far away that only their angular separation is observable to the naked eye,

they all seem to be the same distan
e from an observer whi
h gives the starry sky a spheri
al appearan
e.

It was therefore natural for an
ient astronomers to believe that the \�xed stars," i.e., all stars but the sun,

moon, and planets, were on one sphere.

However, sin
e the sun, moon, and planets, move relative to the stars, these were eventually thought of

as being 
loser to the earth than the rest of the stars. For example, it is 
lear that, sin
e the moon obs
ures

the sun during a solar e
lipse, it is is 
loser than the sun. Sin
e the sun and moon retain approximately the

same angular size, these were assumed to travel on their own spheri
al shells, as were the �ve known planets,

Mer
ury, Venus, Mars, Jupiter, and Saturn. However, the rate of rotation of these bodies was assumed to be

proportional to their distan
e to the earth, so that the moon was 
losest, and Saturn the furthest. In, fa
t

in Timaeus, [29℄ Plato gives the order as: moon, sun, Venus, Mer
ury, Mars, Jupiter, Saturn, stars (there is

a problem ordering Mer
ury, Venus, and the sun, sin
e their periods of rotation are roughly equal).

The theory of spheri
al shells was re�ned by Eudoxus (
a. 408B.C.{355B.C.) to explain the non{
ir
ular

motions of the sun, moon, and planets (for example, the fa
t that annular solar e
lipses sometimes o

ur

implies that the sun or the moon does not have a 
ir
ular orbit).

Furthermore, in Meterologi
a Aristotle states [17, p. 331℄:

\Besides, if the fa
ts as shown in the theorems of astronomy are 
orre
t, and the size of the

sun is greater than that of the earth, while the distan
e of the stars from the earth is many times
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greater than the distan
e of the sun, just as the distan
e of the sun from the earth is many times

greater than that of the moon, the 
one marking the 
onvergen
e of the sun's rays (after passing

the earth) will have its vertex not far from earth, and the earth's shadow, whi
h we 
all night,

will therefore not rea
h the stars, but all the stars will ne
essarily be in the view of the sun, and

non of them will be blo
ked out by the earth."

For the above reasons (note that Ar
himedes refers to Eudoxus in this paper) it is not at all 
lear why

Ar
himedes would 
laim that the sun's orbit was the limit of the universe. Moreover, even if astronomers

used this de�nition in a purely semanti
 way, it would not serve Ar
himedes' purpose in the paper, as it

would still be 
on
eivable to �ll up with sand past the sun all the way to the �xed stars. In fa
t, Ar
himedes

avoids this problem by using a di�erent model of the universe.

4.2 The earth is round

The 
on
ept of \
entre of the earth" mentioned by Ar
himedes 
learly assumes the fa
t that the earth is

not 
at. Indeed, the fa
t that the earth is round had been known for 
enturies before Ar
himedes, namely

by Pythagoras (
a. 572B.C.{500B.C.) who is believed to be the �rst person to have proved this. Arguments

were later written by Aristotle [5, XIV, p 252℄, who noted that the earth makes a round shadow during

an e
lipse of the moon. The shadow is known to be the earth's be
ause a lunar e
lipse only o

urs on

a full moon, when the sun and moon are observed to be in in opposition, i.e., in a straight line and at

opposite ends of the sky. This argument was 
riti
ized by Neugebauer [27, p. 1093℄, who pointed out that

a nonspheri
al obje
t 
an also make a 
ir
ular shadow. Another obje
tion is the phenomenon, observed

by an
ient astronomers, of \paradoxi
al" lunar e
lipses o

urring at dusk in whi
h both the sun and the

fully e
lipsed moon are simultaneously visible. This would 
ontradi
t that the moon, earth, and sun are in

alignment, and that it is the earth's shadow that 
auses the e
lipse. One an
ient astronomer, Cleomedes

(
a. 150B.C.) a
tually gave the 
orre
t explanation, namely that it was 
aused by the refra
tion of the

earth's atmosphere whi
h bent the light and 
aused the setting sun to be seen when it was a
tually below

the horizon so an
ient astronomers also knew that the sunset is an opti
al illusion), see the translation by

Heath in [18, p. 162{166℄ of Cleomedes argument in De Motu Cir
ulari Corporum Caelestium [11℄. The

amount of distortion of a 
elestial obje
t at the horizon by refra
tion is now known to be about 34

0

or about

the same size as the angular diameter of the sun or moon [16, p. 95℄.

Better reasons for the spheri
al shape of the earth are given by Ptolemy [30, I.4℄:

\That also the earth, taken as a whole, is sensibly spheri
al,

Now, that also the earth taken as a whole is sensibly spheri
al, we 
ould most likely think

out in this way. For again it is possible to see that the sun and moon and the other stars do

not rise and set at the same time for every observer on the earth, but always earlier for those

living towards the orient and later for those living towards the o

ident. For we �nd that the

phenomena of e
lipses taking pla
e at the same time, espe
ially those of the moon, are not

re
orded at the same hours for everyone{that is, relatively to equal intervals of time from noon;

but always �nd later hours re
orded for observers towards the orient than for those towards the

o

ident. And sin
e the di�eren
es in the hours is found to be proportional to the distan
es
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between the pla
es, one would reasonably suppose the surfa
e of the earth spheri
al, with the

result that the general uniformity of 
urvature would assure every part's 
overing those following

it proportionately. But this would not happen if the �gure were any other, as 
an be seen from

the following 
onsiderations.

For if it were 
on
ave, the rising stars would appear �rst to people towards the o

ident; and

if it were 
at, the stars would rise and set for all people together and at the same time; and if it

were a pyramid, a 
ube, or any other polygonal �gure, they would again appear at the same time

for all observers on the same straight line [fa
e℄. But none of these things appears to happen.

It is further 
lear that it 
ould not be 
ylindri
al with the 
urved surfa
e turned to the risings

and settings and the plane bases to the poles of the universe, whi
h some think more plausible.

For then never would any of the stars be always visible to any of the inhabitants of the 
urved

surfa
e, but either all the stars would both rise and set for observers or the same stars for an

equal distan
e from either of the poles would always be invisible to all observers. Yet the more

we advan
e towards the north pole, the more the southern stars are hidden and the northern

stars appear. So it is 
lear here the 
urvature of the earth 
overing parts uniformly in oblique

dire
tions proves its spheri
al form on every side. Again, whenever we sail towards mountains

or any high pla
es from whatever angle in whatever dire
tion, we see their bulk little by little

in
reasing as if they were arising from the sea, whereas before they seemed submerged be
ause

of the 
urvature of the water's surfa
e."

Note that Ptolemy's is very 
areful to show that the earth's 
urvature is the same in all dire
tions.

4.3 Aristar
hus and the helio
entri
 theory

Most people believe that it was Coperni
us who �rst proposed the helio
entri
 theory of the universe, so it

might 
ome as a surprise that this theory was proposed some 1800 years earlier by Aristar
hus of Samos.

Though some have 
laimed that Coperni
us was aware that Aristar
hus had a �rst 
laim on this theory,

this view has re
ently been 
hallenged by Gingeri
h in his paper Did Coperni
us owe a debt to Aristar
hus?

[15℄. A semi helio
entri
 theory, i.e., one where Mer
ury and Venus orbit the sun whi
h orbits the earth, is


laimed to have been proposed by Hera
lides Pontus (
a. 388B.C.{315 B.C.). This view has been 
hallenged

by Neugebauer [27, p. 320℄.

Aristar
hus' work on the helio
entri
 theory has been lost and is only known through referen
es to it su
h

as this one. Another works of his have survived [4℄ and the ability that he shows in this paper implies that his

helio
entri
 theory was based on sound theoreti
al prin
iples [17℄, and it should be noted that Ar
himedes

takes it seriously in this paper.

The reason why Ar
himedes mentions Aristar
hus' theory is explained by the end of the last senten
e:

\. . . and that the sphere of �xed stars, situated about the same 
entre as the sun, is so great

that the 
ir
le in whi
h he supposes the earth to revolve bears su
h a proportion to the distan
e

of the �xed stars as the 
entre of the sphere bears to its surfa
e."

The point is that in a helio
entri
 theory, the stars must be mu
h farther away than in a geo
entri
 theory

(see [23℄ for an analysis of the philosophi
al impli
ations of this \larger" universe). Thus Ar
himedes went
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shopping around for di�erent theories of the universe trying to �nd the one with largest size so that his


omputation would not be superseded

The reason that the helio
entri
 theory leads to a larger universe is the phenomenon of parallax, i.e., that

an obje
t whi
h is quite 
lose seems to be at a di�erent angle if viewed from a slightly di�erent position.

One example is if you hold an obje
t a foot away from your eyes, then it seems di�erent when viewed from

one eye or the other, another one is that when you are moving, obje
t that are 
lose seem to move while

faraway obje
t don't (e.g., the moon \follows" you when you walk). So in a helio
entri
 model, if the stars

were too 
lose, i.e., relative to the distan
e of the earth to the sun, then in a six month period, the angle at

whi
h a star would be seen would 
hange a lot. To avoid the parallax problem, the stars have to be so far

away relative to the distan
e between the earth and the sun that is no longer observable.

Aristar
hus' resolution of the parallax problem is to make the ratio of distan
e of the stars to radius of

the earth's orbit around the sun very mu
h larger, and essentially in�nitely large sin
e the ratio he gives, as

referred to by Ar
himedes, is the ratio of a surfa
e to a point.

Clearly, this will not do, �rst of all, on logi
al grounds that the ratio of a surfa
e to a point makes no

sense, and se
ondly, an in�nite universe would 
ontain an in�nite amount of sand. Ar
himedes therefore has

to give a meaningful interpretation of Aristar
hus' theory of the size of the universe, and he 
ontinues:

\Now it is easy to see that this is impossible; for, sin
e the 
entre of the sphere has no

magnitude, we 
annot 
on
eive it to bear any ratio whatever to the surfa
e of the sphere. We

must take Aristar
hus to mean this: sin
e we 
on
eive the earth to be, as it were, the 
entre of

the universe, the ratio whi
h the earth bears to what we des
ribe as the `universe' is the same as

the ratio whi
h the sphere 
ontaining the 
ir
le in whi
h he supposes the earth to revolve bears

to the sphere of �xed stars."

The justi�
ation for Ar
himedes' amendment to Aristar
hus' theory is apparent from the phrase: \. . . sin
e

we 
on
eive the earth to be, as it were, the 
entre of the universe. . . " Re
all that Ar
himedes is using the

word \universe" to mean the sphere with earth at the 
entre and radius the distan
e from the earth to the

sun, so he is saying that from the vantage point of earth, it looks like the sun is going around in a perfe
t


ir
le around the 
entre of earth. It is reasonable to infer that one should not expe
t to see a variation in

the sun's position depending on where the sun is viewed from di�erent pla
es on the earth (solar parallax).

Ar
himedes assumption is thus

Stellar Parallax = Solar Parallax.

It then follows that if the ratio of the radius of the universe to the ratio of the earth's orbit around the sun

is the same as the ratio of the earth's orbit around the sun to the radius of the earth, then there will not be

any stellar parallax problem either (though Ar
himedes 
ontradi
ts this later on when he takes into a

ount

solar parallax, see below).

Estimating solar parallax is a
tually quite easy, as is seen in Figure ??. This shows that the parallax of

a distant obje
t as seen from one end of the earth versus the other end of the earth is exa
tly equal to the

angular size of the earth seen from the distant obje
t. This has the immediate 
onsequen
e that:

Maximum solar parallax is equal to the angular size of the sun divided by the ratio of the sun's diameter to

the earth's diameter.
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Ar
himedes will later assume that: (a) The angular size of the sun is about 1/2 of a degree. (b) The sun

is about ten times larger than the earth. This implies that solar parallax is about 3

0

, or 1/20 of a degree (and

the same value for stellar parallax over a six month period) whi
h would probably not be observable without

a teles
ope. (The a
tual value is about 17

00

:6 on average [16, p. 105℄ and the smaller �gure 
orresponds to

Ar
himedes' underestimation of the size of the sun.)

One 
ould ask whether it would have been valid to assume that the size of the universe should be taken

to be in the ratio of the distan
e of the moon relative to the size of the earth. Sin
e Ar
himedes probably

assumed that the angular size of the moon was 1=2 of a degree and that the moon was about 1/3 the size of

the earth, it would follow that the maximum parallax would be 3=2 of a degree whi
h might be observable

(the a
tual value is about 2 degrees, on average). This would therefore not make a good 
hoi
e.

4.4 The perimeter of the earth

It is now well known that Eratosthenes (
a. 276B.C.{??) made a very good estimate of the earth 
ir
umfer-

en
e [8℄ [24℄, and [34, p. 267℄ for a more 
ontemporary report by Cleomedes 
a. 150 B.C.

Eratosthenes' pro
edure was as follows: He noted that on the summer solsti
e the sun made no shadow in

the an
ient 
ity of Syene (the modern Asswan, Egypt). However, at the same time, in Alexandria, the shadow

at noon made an angle of about 7 degrees, or 1=50 of a full 
ir
le. Sin
e he estimated the distan
e from

Syene to Alexandria to be 5; 000 stades, this gave a 
ir
umferen
e of 250; 000 stades (note that Ptolemy's

argument that the earth is spheri
al is required sin
e Eratosthenes' measurement gives only a 
ir
umferen
e

in the North{South dire
tion).

In order to 
he
k the a

ura
y of Eratosthenes' measurement, one must 
onvert stades into modern units.

This poses a problem, sin
e there is no agreement as to the length of this measure. It is given as about 600

feet or about 200 meters in [20℄, where a stadium is de�ned to be the length of an Olympi
 stadium (or

tra
k). Boyer [9℄ uses 1 stade� 1=10 mile, while Eves [13℄ gives 1 stade� 559 feet. Heath [19℄ 
ites Pliny as

giving 1 stade as 516:73 feet.

Heath's de�nition of the stade results in a 
ir
umferen
e of 24; 662 miles, whi
h is within 50 miles of the

a
tual �gure. This was a
tually 
omputed using the estimate of 252; 000 stade adopted by Hippar
hus and

Theon of Smyrna, whi
h is more 
onvenient sin
e this number is divisible by 60.

This number seems a little too a

urate, and other writers have given the estimate to be 29; 000 miles

using 1 stade being between 1=7:5 and 1=10 of a Roman mile [10, p. 154℄.

It is important to note that Eratosthenes' measurement is a
tually independent of units of measurement

sin
e it gives the 
ir
umferen
e of the earth as 50 times the distan
e from Syene to Alexandria. Thus any

subsequent estimate 
an be made by estimating this distan
e dire
tly. For example, this 
ould have been

done by the 
ontemporaries of Christopher Columbus when estimating the distan
e from Spain to China.

In any 
ase, it is 
lear that 300; 000 stades is an overestimate for all known de�nitions of a stade, and

anyway, Ar
himedes 
overs himself by overestimating by a fa
tor of ten.

Remark. It should be emphasized that Eratosthenes' 
omputation is simpli�ed by the fa
t that Syene lies

exa
tly on the tropi
 of Can
er. This means that on June 21 at high noon, the sun is dire
tly overhead. If

another 
ity not at this latitude were 
hosen, then a 
omparison of two angles of shadows would have been

required. More importantly, this leads one to suspe
t that it be
ause Syene is on the tropi
 of Can
er that
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Eratosthenes though up this method of measuring the 
ir
umferen
e. The qualitative di�eren
e in shadows

led him to 
onsider a measurement of the quantitative di�eren
e in shadows.

4.5 The sizes of the earth, moon, and sun

Ar
himedes assumes that the earth is bigger than the moon and that the sun is bigger than the earth. Both

of these 
an be explained fairly easily, thought the se
ond statement requires a new idea and a physi
al

experiment.

To see that the moon is smaller than the sun, re
all that in a solar e
lipse the moon barely 
overs the

sun (and sometimes its angular diameter 
an be smaller, as in an annular e
lipse) and that it is 
loser than

the sun, sin
e it obs
ures it during a solar e
lipse.

Next, it 
an be seen that the earth is greater than the moon. For if the earth were the same size or

smaller than the moon, then a lunar e
lipse, as seen from the moon, would appear to be exa
tly the same

as a solar e
lipse does from the surfa
e of the earth, and so the shadow of the earth would be quite small.

But in fa
t, the earth shadow during a lunar e
lipse 
overs the whole moon.

To show that the sun is greater than the earth requires new ideas that show the following:

(a) The moon is at least 1/4 the size of the earth.

(b) The sun is at least 8 times the size of the moon.

From this it follows that the sun is at least 8=4 = 2 times the size of the earth.

These ideas were introdu
ed by Aristar
hus in his paper On the sizes and distan
es of the sun and moon

[4℄ who used the following observations

(i) To estimate the size of the earth's shadow on the moon

(Aristar
hus estimated it at twi
e the moon's size, while the true �gure is slightly less than three).

(ii) To observe the angle between the moon and the sun when the moon is exa
tly half full, i.e., when

the line between the moon and the sun makes a 90

Æ

angle with the line between the observer and the moon.

(Note that this se
ond method requires the knowledge that the moon's illumination 
omes from the re
e
ted

light of the sun, a fa
t that had been dis
overed by Anaxogoras (
a. 500B.C.{428B.C.) two 
enturies earlier.)

The �rst observation gives a lower limit on the size of the moon, while the se
ond gives an estimate of

the ratio of the moon's distan
e to the sun's distan
e, and so of their relative sizes.

As will be seen in the next se
tion, the size of the earth shadow on the moon implies that the moon has

a radius at least 1/3 of the earth's. Moreover the a
tual angle that the moon and sun make when the moon

is half full is 89

Æ

50

0

, so it should be possible to estimate this as being bigger than 83

Æ

, whi
h has 
osine less

than 1=8. In other words, su
h an estimate shows that the sun is at least 8 times the size of the moon.

Aristar
hus used his method to try to get mu
h more pre
ise information about the sizes of the sun and

moon. Unfortunately, there are many problems with this method. As noted above the a
tual angle is more

like 89

Æ

50

0

, whi
h is indistinguishable from 90

Æ

, for example, the horizontal refra
tion dis
ussed above is 34

0

,

so that this e�e
t alone is of the same order as what needs to be observed, at shallow angles at least.

The other problem is that the exa
t time when the moon is half full is extremely hard to determine.
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Aristar
hus, gave the grossly ina

urate �gure of 87

Æ

whi
h led him to get severely underestimate the

size and distan
e of the sun. It is now believed that Aristar
hus' paper is meant more as an appli
ation of

his 
orre
t idea and as a mathemati
al exposition of how it 
ould work [17℄.

Strangely enough, Aristar
hus does not give an expli
it estimate of the distan
e to the sun, but his

method does give a lower bound, whi
h is essentially the one given by Ar
himedes. He then states

\It is true that, of the earlier astronomers, Eudoxus de
lared it to be about nine times as

great, and Pheidias, my father twelve times, while Aristar
hus tried to prove that the diameter

of the sun is greater than 18 times but less than 20 times the diameter of the moon."

This passage is interesting in regards to the biographi
al information that it reveals about Ar
himedes'

father. The 
omputation of Aristar
hus that is alluded to is his paper On the sizes and distan
es of the sun

and moon, as mentioned above.

The general prin
iple by whi
h the size of the moon 
an be estimated is the following: Under the

assumption that the sun is mu
h farther away than the moon, the shadow of the earth is roughly the same

size as the earth, at least when it obs
ures the moon. Thus the ratio of the moon's diameter to the shadow of

the earth during a lunar e
lipse should roughly be the ratio of the moon's diameter to the earth's diameter.

The method of Aristar
hus is simply a pre
ise way to 
ompute this. What he shows is:

Theorem of Aristar
hus. Let s be the radius of the sun, ` the radius of the moon, and t the radius of the

earth. Furthermore, let u be the ratio of the radius of the shadow of the earth to the radius of the moon.

Finally, let  be the angle between the moon and the sun, as seen from the earth when the moon is exa
tly

half illuminated. Then,

`

t

=

1 + 
os 

1 + u

;

s

t

=

1 + 
os 


os (1 + u)

:

The �rst formula has the interesting feature that there is not too mu
h dependen
e of  , it 
ontributes

at most a fa
tor of two. In fa
t,  will be very 
lose to 90

Æ

, so that this formula will be

`

t

�

1

1 + u

;

so only the value of u matters. Aristar
hus believed that u = 2 so that ` � :33t. Ptolemy later gave the

value `=t = 2

3

5

.

The se
ond formula is similar ex
ept for the 1= 
os term. Sin
e  is 
lose to 90

Æ

(Aristar
hus took it to

be 87

Æ

and the a
tual value is about 89

Æ

50

0

), 
os is small, so that there is a lot of instability in the value

of s=t. This makes it 
lear that no pre
ise 
al
ulation of the sun's size is possible using su
h methods.

These methods 
an also give estimates for the distan
es of the sun and moon be
ause the 
ommon ratio

`=L = s=S is sin �, where �, the angular diameter of the sun, 
an be measured physi
ally. Aristar
hus �rst

reported � = 2

Æ

, but this was qui
kly 
orre
ted to 1=2

Æ

, as is the subje
t of the next se
tion.

Proof of Aristar
hus' theorem: One starts with the fa
t that the moon has almost the same angular

size as the sun, as viewed from earth,

`

L

=

s

S

= � = sin � ;

where � is the angular size of the moon or sun.
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Now 
onsider a full lunar e
lipse. Let D equal the distan
e of the 
enter of the earth to where the shadow

of the earth meets at a point. By similar triangles

D

S

=

t

s� t

;

and substituting s = s=� gives

D =

ts

�(s� t)

:

By similar triangles, one also gets

D

t

=

D � L

u`

so that

D =

`t

�(t� u`)

:

Equating these two values for D gives

ts

�(s� t)

=

`t

�(t� u`)

:

Now let L=S = � = 
os , then also `=s = � (so s=` = 1=�) by the lunar e
lipse observation. Substituting

this into the last equation and dividing out the 
ommon fa
tor of t=� gives

`=�

`=� � t

=

`

t� u`

:

This 
an be simpli�ed to

1

`� �t

=

1

t� u`

;

whi
h is the same as

1

`=t� �

=

1

1� u`=t

:

This 
an be solved for x = `=t:

1

x� �

=

1

1� ux

=) 1� ux = x� � =) x =

1 + �

1 + u

:

5 Experiments

I have tried to reprodu
e Ar
himedes' experiment to measure the angular diameter of the sun. My �rst

attempt was on Mar
h 19, 1997, when I went to Veni
e Bea
h, CA, with a meter long ruler, and some


ylindri
al weights from a set of 
hemistry weight. Between 6p.m. and 6:05p.m., I put a 
ylinder of diameter

9mm. and height 9mm on the ruler, pointed in the dire
tion of the setting sun. The 
ylinder seemed to be

about 820mm, but there seemed to be some portion of the sun visible from about 880mm. This was on a

se
ond attempt. On the �rst attempt, I got distan
es of 810mm and 950mm, respe
tively.

Some preliminary remarks from this are:

1 Ar
himedes either had help, or else his 
ylinders were very small (at most 5mm in diameter) sin
e anything

larger than 5mm would be 50
m away, and so too far to move by yourself while looking at the sun.

2 The weights did not 
ast a 
lear shadow, so determining this angle using shadows did not seem pra
ti
able.
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Figure 5.0.1[p℄: Lower bound on the size of the sun

3 The stand Ar
himedes refers to had to let the ruler rotate, sin
e in the se
ond estimate the sun must be

seen on both sides of the 
ylinder, so the dire
tion of the sun has to be pre
ise.

4 The day has to be very 
lear, as any 
louds seem to distort the sun when it is on the horizon.

5 Even when the sun was on the horizon, its brightness would still 
ause light to seem to appear from the

sides of the 
ylinder.

One 
an 
onje
ture that Ar
himedes 
ould have done this experiment alone as his exposition in the paper

leads one to believe that he would not trust anyone else to do it for him. Perhaps one way would have

been for him to use a system of pulleys, sin
e su
h methods are attributed to him elsewhere, for example by

Plutar
h.

Ar
himedes then does further experiments in order to 
ompensate for the fa
t that the angle the sun

makes with the eye does not have its vertex at the eye, sin
e the eye a
tually sees from an area, not from a

point. In order to 
ompensate for this, he tries to 
ompute the diameter of the pupil by taking two 
ylinders,

one white and one normal, and putting one as 
lose to the eye as possible so it o

ludes the white one.

This experiment has a number of problems asso
iated with it.

(i) The experiment requires a 
ylinder that is of about the same size as the pupil, whi
h requires knowing

its size in the �rst pla
e.

(ii) The size of the pupil varies a

ording to light 
onditions.

In fa
t, the bounds Ar
himedes wants 
an easily be a
hieved without any referen
e to the pupil. A lower

bound on angular size of the sun 
an be done as follows:

Take a 
ylinder and pla
e it so that you 
an just see the sun on its edges, then take a smaller 
ylinder and

pla
e it so that it just 
overs the other 
ylinder. The angle between tangents to the 
ylinders will be a lower

bound. Similarly one gets an upper bound:

Take a 
ylinder and pla
e it so that it just 
overs the sun, then pla
e a smaller 
ylinder so that one 
an just

see the edges of the larger 
ylinder. The angle between tangents to the 
ylinders will be an upper bound.

Note that this method uses fewer 
ylinders. In any 
ase, Ar
himedes' digression makes him the �rst person

known to take a

ount human physiology in a physi
al measurement, the study of whi
h later be
ame known

as psy
hophysi
s, a �eld developed by Hermann Helmoltz (1821{1894).

This fa
t does not seem to be known among experimental psy
hologists and there are only a few papers

written on this subje
t [25℄ [32℄.

Other 
riti
isms of this experiment are that
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Figure 5.0.2[p℄: Lower bound on the size of the sun

Figure 5.0.3[p℄: Refra
tion magnifying size

(a) The experiment 
an also be done with the moon, sin
e solar e
lipses show that the sun and moon

have the same angular size. The advantage of this is that the experiment 
an be done on a less bright obje
t

(for example, on a partial moon).

(b) Ar
himedes does not address the question of the moon illusion, in other words, that the sun and

moon appear to be larger when on the horizon. This is important be
ause showing that this is in fa
t an

illusion requires an a

urate measurement. In fa
t, it is easy to show that the sun is not a
tually 
loser,

for example, sin
e it sets at di�erent positions on its orbit at di�erent times of the year, but this does not

explain whether the illusion is 
aused by something physi
al, e.g., an atmospheri
 distortion, or is purely a

produ
t of human per
eption.

In fa
t, there is a referen
e to Ar
himedes explaining the moon illusion as a 
onsequen
e of atmospheri


refra
tion in a 
ommentary of Theon of Alexandria on Ptolemy's Almagest whi
h I have translated from [3,

Vol. 4, p. 207℄ (also [2℄):

To refute the opinion that 
elestial bodies appear larger when they are near the horizon

be
ause they are seen from a smaller distan
e, Ptolemy proposes here to analyze a phenomenon

of this kind and to show that it does not o

ur be
ause of the distan
e between earth and sky

but that due to the very humid emanations that surround the earth, the visual �eld en
ounters

a body of air that is denser and that the rays going to the eye through the air are refra
ted and

thus make the apparent angle at the eye larger as was shown by Ar
himedes in his treatise On


atoptri
a, where he says that obje
ts submerged in water also seem larger, and the more so the

deeper. . . Let the lines E�A and EKB, oriented by refra
tion, as in Ar
himedes in his treatise

On 
atoptri
a, to the points A and B as we have said.

If this is true, then it has a serious impa
t on Ar
himedes' experiment sin
e its in
lusion in the Sand Re
koner

may have been related to work on explaining the moon illusion. This would explain why he would go to

so mu
h pains to get an a

urate measurement, even 
ompensating for the size of the eye, as he might be


omparing this measurement with a future one of the sun at its zenith.

Note that Ptolemy later dismissed this explanation and 
laimed that the moon illusion was due to human
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per
eption [31, p. ??℄.

6 Solar parallax

The next part of the paper is devoted to a 
onsideration of the e�e
t of solar parallax on the estimation

of the distan
e of the sun. Sin
e Ar
himedes has previously stated that this quantity is negligible, one


an only wonder why he takes it in to a

ount later. One possibility is that he wants to make his method


on
eptually 
orre
t. Another reason might be related to the possibility stated above, that Ar
himedes was

trying to explain the moon illusion. In this 
ase, he would require an a

urate measurement (this is 
onsistent

with his 
omputation, see below). One 
an also 
onje
ture that the in
lusion of a parallax 
omputation while

ignoring the moon illusion in the paper is a subtle joke-namely, that the sun looks largest when it is a
tually

farthest from the observer.

One sees that in Ar
himedes estimation of solar parallax, his �nal estimate is s + r for the quantity

p

s

2

+ r

2

, i.e., the error introdu
ed by solar parallax is bounded by r. Now the upper bound s + r

2

=(2s)

shows that this error is a
tually bounded by r

2

=(2s) whi
h is smaller by a fa
tor of r=(2s). Sin
e Ar
himedes

assumes that s is at most 10000r, even taking s as more than 1000r shows that Ar
himedes is overestimating

the parallax error by a fa
tor of 1000. This very poor estimate for a negligible 
orre
tion 
an be explained

assuming that Ar
himedes intended to make another observation of the sun at its zenith be
ause in that 
ase

the value s + r gives the exa
t stellar parallax 
orre
tion and Ar
himedes might have wanted to introdu
e

the same 
orre
tion term for both observations. This gives further eviden
e that Ar
himedes was 
on
erned

with the moon illusion.

7 Large numbers

7.1 The 
urrent system

Re
all that a number in base k is written as a

0

+a

1

k+a

2

k

2

+ � � �+a

n

k

n

, where 0 � a

0

; : : : ; a

1

< k. Modern

notation uses base 10 for writing numbers, but the way English names of numbers are a
tually spoken is

base 1000 in the following sense: A large number su
h as 2

40

= 1; 099; 511; 627; 776 is said to be \one trillion

ninety nine billion �ve hundred and eleven million six hundred and twenty seven thousand seven hundred and

seventy six." The sequen
e \million, billion, trillion,. . . " represents the number 1000

n+1

as \latin(n){illion"

where latin(n) is the Latin name for n.

The origin of this system dates ba
k to Italy where millione (= great thousand) was used to denote a

thousand thousand. Around 1484 N. Chuquet used billion, trillion,. . . ,nonillion whi
h appeared in print

in a 1520 book of Emile de la Ro
he. These numbers denoted powers of a million, i.e., a billion was a

million million, a trillion was a million billion, et
. However, around the middle of the 17th 
entury billion

= thousand million, trillion = thousand billion,. . . , started to be used in Fran
e. This is the system now

used in the United States, but the original system is still used in Great Britain and Germany.

Di
tionaries only list numbers up to a vigintillion, and sin
e this 
orresponds to Latin for twenty, in

Ameri
an notation it is 1000

21

= 10

63

.
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7.2 Naming large numbers

Here is, essentially, Ar
himedes' method for naming large numbers. Start with a named number N , then


onsider powers N

2

; N

3

; : : : and introdu
e an auxilliary terms su
h as order or period. One then 
alls N the

unit of the �rst order, N

2

the unit of the se
ond order, and so on. This allows one to name numbers, e.g., if

N = 10000, then 1093N

2

+ 3511N + 1 would be \one thousand and ninety three units of the se
ond order

and three thousand �ve hundred and eleven units of the �rst order and 1."

One runs out of name of orders at the Nth order, whi
h is N

N

. It follows that introdu
tion of a new

symbol su
h as order or period allows one to name numbers up to N

N

. Note, however, that naming orders

uses ordinals, i.e., �rst, se
ond, third,. . . , so going up to N

N

requires one to have names for the ordinals up

to N as well.

Upon re
e
tion it is seen that the English language system uses this system, where the new symbol is

the suÆx \illion," i.e., latin(n){illion means a number of the nth order. However, it does not seem that the

latin pre�x 
orresponds to an ordinal.

In [22℄ D.E. Knuth gives a more eÆ
ient nomen
lature for large numbers along the following lines. Given

names for all numbers up to N , one 
an name all numbers up to N

2

by using aN + b, where a; b � N . For

example, one says \nineteen hundred and ninety seven" for 1997 (N = 100). It follows that a name for a

hundred hundred makes sense, so that the next name in the system is the myriad. This allows one to 
ount

up to a myriad myriad, and the new name for this is a myllion. Similarly, a byllion is a myllion myllion and

in general latin(n){yllion is latin(n� 1){yllion

2

, i.e., 10

2

n+2

.

This system is more eÆ
ient at naming large numbers than one where a new name is given for ea
h

power of some number, however it has the disadvantage that one 
annot easily re
ognize the exponent of

the base from the name of the number. The point is that large numbers are rarely named exa
tly and are

most often used for rough estimates, so that the power of ten is the most important information 
ontained

in the number.

7.3 The Greek system

In Ar
himedes' time, the system used by Greeks was hardly adequate to express any number larger that a

hundred million. The Greeks had an alphabeti
 method of writing numbers a

ording to the s
heme

� = 1; � = 2; 
 = 3; Æ = 4; � = 5; a = 6; � = 7; � = 8; � = 9;

� = 10; � = 20; � = 30; � = 40; � = 50; � = 60; o = 70; � = 80; b = 90;

� = 100; � = 200; � = 300; � = 400; � = 500; � = 600;  = 700; ! = 800; 
 = 900:

The Greeks had to use three spe
ial symbols in in order to get all numbers less than a thousand. These

are represented here as a; b; 
, due to la
k of fonts. The �rst letter is digamma or stigma in minus
ule, the

se
ond is koppa, and the third is san or ssade, and later, in minus
ule, 
alled sampi.

The thousands were represented as a lower left stroke followed by one of �; : : : ; �, or else by one of the


apital letters A; : : : ;�. Thus, 1234 would be written as A��Æ or

0

���Æ, where the overline is meant to

indi
ate that this is a number, not a word.
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Numbers over ten thousand would be expressed by writing the number of ten thousands over a �, as ten

thousand was 
alled a myriad (�����Æ��).

The Greek system did not express numbers larger than a myriad myriad, \ten thousand times ten

thousand," e.g., Daniel 7:10 and Revelation 5:11.

7.4 Ar
himedes' system

Ar
himedes begins the des
ription of this system by noting that the Greek language already has names

for numbers up to a myriad. He then observes that this allows one to name numbers up to a myriad

myriad (= 10

8

), as noted above. This is the largest number named in the 
ontemporary Greek system and

Ar
himedes uses it as the base of his system. In order to simplify the exposition, de�ne 
 = 10

8

.

Ar
himedes 
alls the numbers up to M �rst numbers whi
h Heath [1℄ 
alls numbers of the �rst order.

Note that Ar
himedes' system expresses ranges of numbers, as opposed to naming a single number.

A

ording to the above, introdu
tion of the new symbol \numbers" whi
h 
an be taken to mean \order

of numbers" should allow Ar
himedes to name numbers up to 





, and this is what he pro
eeds to do. The

last number of the �rst order is 
 whi
h Ar
himedes 
alls the unit of se
ond numbers, and the numbers in

the range 
 to 


2

are 
alled the se
ond order. In general the nth order will 
onsist of the range 


n�1

to




n

and Ar
himedes 
ontinues until the 
th order whi
h is the range 



�1

to 





. This last number is a

myriad myriad to the myriad myriad power, as expe
ted. As noted above, this requires being able to name

all ordinals up to the 
th, and this is possible, sin
e these numbers are part of the Greek language.

Su
h large numbers are suÆ
ient for any physi
al appli
ation, but in order to prove the power of his

system Ar
himedes 
ontinues by introdu
ing a se
ond symbol, the period. Thus, the range of numbers

de�ned up to the end of the 
th numbers is 
alled the �rst period, and the last number of the �rst period,

whi
h I 
all �, is de�ned to be the unit of the se
ond period, i.e., � = 





. A

ording to the above, this


ould allow Ar
himedes to name numbers up to �

�

, assuming that he had names for the ordinals up to �.

However, it will be seen that this is not the 
ase.

In fa
t, Ar
himedes goes on to name the �rst order of the se
ond period to be the range � to �
, and

the se
ond order of the se
ond period to be �
 to �


2

, and so on. In general, the nth order of the se
ond

period will be �


n�1

to �


n

. One 
ontinues until the 
th order of the se
ond period whi
h is the range

�



�1

to �





= �

2

. This number is then taken to be the unit of numbers of the third period, and in the

same way, the numbers �

2

to �

3

will be 
alled the numbers of the 3rd period. In general, the numbers of

the nth period will be the range �

n�1

to �

n

.
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The Ar
himedean system 
an be des
ribed by

First period

8
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>
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1st numbers

z }| {

1; : : : ;
 ;

2nd numbers

z }| {


; : : : ;


2

;

3rd numbers

z }| {




2

; : : : ;


3

;

.

.

.

.

.

.

nth numbers

z }| {




n�1

; : : : ;


n

;

.

.

.

.

.

.


th numbers

z }| {





�1

; : : : ;





= �;

; se
ond period
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1st numbers
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�; : : : ;�
;

2nd numbers

z }| {

�
; : : : ;�


2

;

3rd numbers

z }| {

�


2

; : : : ;�


3

;

.

.

.

.

.

.

nth numbers

z }| {

�


n�1

; : : : ;�


n

;

.

.

.

.

.

.


th numbers

z }| {

�



�1

; : : : ;�





= �

2

; : : : ;

and so forth until


th period
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1st numbers

z }| {

�


�1

; : : : ;�


�1


;

2nd numbers

z }| {

�


�1


; : : : ;�


�1




2

;

3rd numbers

z }| {

�


�1




2

; : : : ;�


�1




3

;

.

.

.

.

.

.

nth numbers

z }| {

�


�1




n�1

; : : : ;�


�1




n

;

.

.

.

.

.

.


th numbers

z }| {

�


�1





�1

; : : : ;�


�1







= �




:

:

Ar
himedes 
ontinues till the 
th period whi
h gives numbers in the range �


�1

to �




. This last number

is �

10

8

= 10

8�10

16

is the largest one named by Ar
himedes and was written by him as: �� ������������o����

����oÆo� ��������������!� �����!� ������ �����Æ��.

This is translated by Heath as: \a myriad myriad units of myriad myriad numbers of the myriad myriad

period." However, a more a

urate translation would be: \A myriad myriad units of myriad{times myriadth
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numbers of the myriad{times myriadth period." Here, the term \myriad{times" represents the adverb for

\myriad" as in \on
e, twi
e,. . . , myriad{times."

One sees that Ar
himedes stops at this number be
ause he has failed to in
lude names for the ordinals


orresponding to his new numbers. The most evident reason is that Ar
himedes uses ranges of numbers

whi
h makes the naming of the 
orresponding ordinals diÆ
ult: What is the ordinal 
orresponding to the

\unit of the se
ond order"?

Moreover, modern English has a

epted the 
onversion of any term denoting number into an ordinal by

appending \th", as in n =) nth, but this is not ne
essarily the 
ase with the an
ient Greek language, where

su
h a system must be more rigorous. For example, in English, Ar
himedes' largest number is: the unit

of the se
ond orderth period. Similarly, by \abuse of notation" one 
alls the nth orderth period the range

�




n�1

to �




n

. It would then follow that the 
th orderth period of numbers would be the range �





�1

to

�







= �

�

, as 
laimed. This last number 
ould also be 
alled the se
ond periodth period of numbers. It

would be

(10

8�10

8

)

10

8�10

8

= 10

8�10

8(10

8

+1)

:

For his appli
ations, Ar
himedes wants to apply the law of exponents to orders of numbers, so only needs

a system to denote large power of 10 (D.H. Fowler [14, p. 225℄ remarks there is no eviden
e that Ar
himedes

intended this system for anything other than this). As eviden
e, note that the term \myriad myriad myriad"

appears, though it should have been 
alled a \myriad se
ond numbers" a

ording to this s
heme.

It is seen that his system is suboptimal be
ause in naming ranges of numbers he e�e
tively starts by

naming the the unit as being the �rst in the list of powers, so that the unit of nth numbers is a
tually a

M

n+1

, instead of M

n

. It follows that, a

ording to this s
heme, a unit of mth numbers times a unit of nth

numbers will be the unit of m+ n� 1 numbers.

Here one sees how Ar
himedes' de�nition 
an be improved. Instead of looking at ranges of numbers,


onsider how one might say a large number in terms of myriads, and de�ne the order of a number as the

largest number of times you repeat the word \myriad" 
onse
utively. Thus, a myriad is the unit of the

�rst order, as are number su
h as one hundred and twenty three myriads. Similarly, a myriad{myriad is

the unit of the se
ond order, a myriad-myriad-myriad is the unit of the third order, and so on. It is quite


lear that su
h a nomen
lature satis�es the law of exponents, as multipli
ation of units of orders is simply


on
atenation of the repeated \myriads" of ea
h fa
tor.

One 
an try to explain why this simpler system was not used by Ar
himedes. It might be due to

the synta
ti
al pe
uliarities of An
ient Greek in whi
h the numbers \myriad-myriad" and \myriad-myriad-

myriad" were written ������ �����Æ�� and �������� ������� �����Æ�����, respe
tively. This 
an be

transliterated to \a myriad{times a myriad times a myriad." One sees that the Greek syntax does not make

the repetition of the word \myriad" as 
lear as in present English usage.

As noted above, ex
ept for one 
ase, Ar
himedes uses the law of exponents only in the form 10

a

10

6

=

10

a+6

. Clearly, Ar
himedes is pi
king the largest 
ube of a power of 10 smaller than 10

8

, so that ea
h

multipli
ation will only in
rease numbers by a single order at most. Whether this is done be
ause it makes

the argument 
learer, or be
ause Ar
himedes is un
omfortable with his notation is a matter of debate.
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As dis
ussed above, to improve Ar
himedes' system, one should

1. Name 
ardinals instead of ranges of numbers.

2. Find a natural way to name large ordinals.

3. Make the law of exponents 
learer.

One �nds a basis for su
h a system in nomen
lature of Diophantus [12, p. 47℄ who used the notation

\�rst myriad" for 10; 000 and \se
ond myriad" for 10; 000

2

.

This system has all the above properties in that it names 
ardinals, ea
h term in the sequen
e has a


orresponding ordinal name, and the law of exponents is seen by the fa
t that the mth{myriad times the

nth{myriad is the (m+ n)th{myriad.

This pro
ess ends at the the myriadth myriad (����o��� �����) whi
h 
an be 
alled a \big myriad"

(��
� �����). If one lets A = 10000, then a big myriad is A

A

whi
h will be denoted as B. Similarly, a

\bigger myriad" (����!� �����) would be the big myriadth big myriad (��
� ����o��� ��
� �����) whi
h

would be B

B

, denoted by �. A \biggest myriad" would be the \bigger myriadth bigger myriad" (����!�

����o���) denoted by � and equal to �

�

. Finally, one would have the \biggest myriadth biggest myriad"

whi
h would be �

�

. This last number is larger than 10

10

10

10

10

whi
h is mu
h larger than Ar
himedes'

numbers, yet expressible in similar notation.

As with Ar
himedes, one 
an go further by letting A be the �rst period, B the se
ond period, et
., so

that the biggest myriadth period would be a number larger that 10

10

.

.

.

10

where there are 10

10

10

10

terms in

the exponential.
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