ΣΤΟΙΧΕΙΩΝ α'. ELEMENTS BOOK 1 αί ἄρα ὑπὸ ΒΑΔ, ΑΔΕ γωνίαι δύο ὀρθαῖς ἴσαι εἰσίν. ὀρθὴ δὲ ἡ ὑπὸ ΒΑΔ· ὀρθὴ ἄρα καὶ ἡ ὑπὸ ΑΔΕ. τῶν δὲ παραλληλογράμμων χωρίων αἱ ἀπεναντίον πλευραί τε καὶ γωνίαι ἴσαι ἀλλήλαις εἰσίν· ὀρθὴ ἄρα καὶ ἑκατέρα τῶν ἀπεναντίον τῶν ὑπὸ ΑΒΕ, ΒΕΔ γωνιῶν· ὀρθογώνιον ἄρα ἐστὶ τὸ ΑΔΕΒ. ἐδείχθη δὲ καὶ ἰσόπλευρον. Τετράγωνον ἄρα ἐστίν καί ἐστιν ἀπὸ τῆς AB εὐθείας ἀναγεγραμμένον ὅπερ ἔδει ποιῆσαι. μζ΄. Έν τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν γωνίαν περιεχουσῶν πλευρῶν τετραγώνοις. "Εστω τρίγωνον ὀρθογώνιον τὸ ΑΒΓ ὀρθὴν ἔχον τὴν ὑπὸ ΒΑΓ γωνίαν λέγω, ὅτι τὸ ἀπὸ τῆς ΒΓ τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΓ τετραγώνοις. 'Αναγεγράφθω γὰρ ἀπὸ μὲν τῆς ΒΓ τετράγωνον τὸ ΒΔΕΓ, ἀπὸ δὲ τῶν ΒΑ, ΑΓ τὰ ΗΒ, ΘΓ, καὶ διὰ τοῦ Α ὁποτέρα τῶν ΒΔ, ΓΕ παράλληλος ἤχθω ἡ ΑΛ· καὶ ἐπεζεύχθωσαν αἱ ΑΔ, ΖΓ. καὶ ἐπεὶ ὀρθή ἐστιν ἑκατέρα τῶν ὑπὸ ΒΑΓ, ΒΑΗ γωνιῶν, πρὸς δή τινι εὐθεία τῆ ΒΑ καὶ τῷ πρὸς αὐτῆ σημείῳ τῷ Α δύο εὐθεῖαι αἱ ΑΓ, ΑΗ μὴ ἐπὶ τὰ αὐτὰ μέρη κείμεναι τὰς ἐφεξῆς γωνίας δυσὶν ὀρθαῖς ἴσας ποιοῦσιν ἐπ' εὐθείας ἄρα ἐστὶν ἡ ΓΑ τῆ ΑΗ. διὰ τὰ αὐτὰ δὴ καὶ ἡ ΒΑ τῆ ΑΘ ἐστιν ἐπ' εὐθείας. καὶ ἐπεὶ ἴση ἐστὶν ἡ ὑπὸ ΔΒΓ γωνία τῆ ὑπὸ ΖΒΑ· ὀρθὴ γὰρ ἑκατέρα κοινὴ προσκείσθω ἡ ὑπὸ ΑΒΓ· ὅλη ἄρα ἡ ὑπὸ ΔΒΑ ὅλη τῆ ὑπὸ ΖΒΓ ἐστιν ἴση. καὶ ἐπεὶ ἴση ἐστὶν ἡ μὲν ΔΒ τῆ ΒΓ, ἡ δὲ ΖΒ τῆ ΒΑ, δύο δὴ αἱ ΔΒ, ΒΑ δύο ταῖς ΖΒ, ΒΓ ἴσαι εἰσὶν ἑκατέρα ἑκατέρα καὶ γωνία I say that (it is) also right-angled. For since the straight-line AD falls across the parallel-lines AB and DE, the (sum of the) angles BAD and ADE is equal to two right-angles [Prop. 1.29]. But BAD (is a) right-angle. Thus, ADE (is) also a right-angle. And for parallelogrammic figures, the opposite sides and angles are equal to one another [Prop. 1.34]. Thus, each of the opposite angles ABE and BED (are) also right-angles. Thus, ADEB is right-angled. And it was also shown (to be) equilateral. Thus, (ADEB) is a square [Def. 1.22]. And it is described on the straight-line AB. (Which is) the very thing it was required to do. ## Proposition 47 In a right-angled triangle, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides surrounding the right-angle. Let ABC be a right-angled triangle having the right-angle BAC. I say that the square on BC is equal to the (sum of the) squares on BA and AC. For let the square BDEC have been described on BC, and (the squares) GB and HC on AB and AC (respectively) [Prop. 1.46]. And let AL have been drawn through point A parallel to either of BD or CE [Prop. 1.31]. And let AD and FC have been joined. And since angles BAC and BAG are each right-angles, then two straight-lines AC and AG, not lying on the same side, make the (sum of the) adjacent angles equal to two right-angles at the same point A on some straight-line BA. Thus, CA is straight-on to AG [Prop. 1.14]. So, for the same (reasons), BA is also straight-on to AH. And since angle DBC is equal to FBA, for (they are) both right-angles, let ABC have been added to both. Thus, the whole (angle) DBA is equal to the whole (angle) FBC. And since DB is equal to BC, and BA ΣΤΟΙΧΕΙΩΝ α'. ELEMENTS BOOK 1 ή ὑπὸ ΔΒΑ γωνία τῆ ὑπὸ ΖΒΓ ἴση· βάσις ἄρα ἡ ΑΔ βάσει τῆ ΖΓ [ἐστιν] ἴση, καὶ τὸ ΑΒΔ τρίγωνον τῷ ΖΒΓ τριγώνω ἐστὶν ἴσον· καί [ἐστι] τοῦ μὲν ΑΒΔ τριγώνου διπλάσιον τὸ ΒΛ παραλληλόγραμμον. βάσιν τε γὰρ τὴν αὐτὴν ἔχουσι τὴν ΒΔ καὶ ἐν ταῖς αὐταῖς εἰσι παραλλήλοις ταῖς ΒΔ, ΑΛ΄ τοῦ δὲ ΖΒΓ τριγώνου διπλάσιον τὸ ΗΒ τετράγωνον βάσιν τε γὰρ πάλιν τὴν αὐτὴν ἔχουσι τὴν ΖΒ καὶ ἐν ταῖς αὐταῖς εἰσι παραλλήλοις ταῖς ΖΒ, ΗΓ. [τὰ δὲ τῶν ἴσων διπλάσια ἴσα ἀλλήλοις ἐστίν·] ἴσον ἄρα έστὶ καὶ τὸ ΒΛ παραλληλόγραμμον τῷ ΗΒ τετραγώνῳ. όμοίως δη ἐπιζευγνυμένων τῶν ΑΕ, ΒΚ δειχθήσεται καὶ τὸ ΓΛ παραλληλόγραμμον ἴσον τῷ ΘΓ τετραγώνῳ. όλον ἄρα τὸ ΒΔΕΓ τετράγωνον δυσὶ τοῖς ΗΒ, ΘΓ τετραγώνοις ἴσον ἐστίν. καί ἐστι τὸ μὲν ΒΔΕΓ τετράγωνον άπὸ τῆς ΒΓ ἀναγραφέν, τὰ δὲ ΗΒ, ΘΓ ἀπὸ τῶν ΒΑ, ΑΓ. τὸ ἄρα ἀπὸ τῆς ΒΓ πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν ΒΑ, ΑΓ πλευρῶν τετραγώνοις. Έν ἄρα τοῖς ὀρθογωνίοις τριγώνοις τὸ ἀπὸ τῆς τὴν ὀρθὴν γωνίαν ὑποτεινούσης πλευρᾶς τετράγωνον ἴσον ἐστὶ τοῖς ἀπὸ τῶν τὴν ὀρθὴν [γωνίαν] περιεχουσῶν πλευρῶν τετραγώνοις: ὅπερ ἔδει δεῖξαι. the two (straight-lines) DB, BA are equal to the two (straight-lines) CB, BF, respectively. And angle DBA(is) equal to angle FBC. Thus, the base AD [is] equal to the base FC, and the triangle ABD is equal to the triangle FBC [Prop. 1.4]. And parallelogram BL [is] double (the area) of triangle ABD. For they have the same base, BD, and are between the same parallels, BDand AL [Prop. 1.41]. And parallelogram GB is double (the area) of triangle FBC. For again they have the same base, FB, and are between the same parallels, FBand GC [Prop. 1.41]. [And the doubles of equal things are equal to one another.] ‡ Thus, the parallelogram BLis also equal to the square GB. So, similarly, AE and BK being joined, the parallelogram CL can be shown (to be) equal to the square HC. Thus, the whole square BDEC is equal to the (sum of the) two squares GB and HC. And the square BDEC is described on BC, and the (squares) GB and HC on BA and AC (respectively). Thus, the square on the side BC is equal to the (sum of the) squares on the sides BA and AC. Thus, in a right-angled triangle, the square on the side subtending the right-angle is equal to the (sum of the) squares on the sides surrounding the right-[angle]. (Which is) the very thing it was required to show. ^{\dagger} The Greek text has "FB, BC", which is obviously a mistake. [‡] This is an additional common notion.