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1 Translation

I. There are some, king Gelon, who think that the number of the sand is in�nite in multitude; and I mean

by the sand not only that whih exists about Syrause and the rest of Siily but also that whih is found in

every region whether inhabited or uninhabited. Again there are some who, without regarding it as in�nite,

yet think that no number has been named whih is great enough to exeed its multitude. And it is lear

that they who hold this view, if they imagined a mass made up of sand in other respets as large as the

mass of the earth �lled up to a height equal to that of the highest of the mountains, would be many times

further still from reognizing that any number ould be expressed whih exeeded the multitude of the sand

so taken. But I will try to show you by means of geometrial proofs, whih you will be able to follow, that,

of the numbers named by me and given in the work whih I sent to Zeuxippus, some exeed not only the

number of the mass of sand equal in magnitude to the earth �lled up in the way desribed, but also that of

a mass equal in magnitude to the universe. Now you are aware that `universe' is the name given by most

astronomers to the sphere whose entre is the entre of the earth and whose radius is equal to the straight

line between the entre of the sun and the entre of the earth. This is the ommon aount, as you have

heard from astronomers. But Aristarhus of Samos brought out a book onsisting of some hypotheses, in

whih the premisses lead to the result that the universe is many times greater than that now so alled. His

hypotheses are that the �xed stars and the sun remain unmoved, that the earth revolves about the sun in

the irumferene of a irle, the sun lying in the middle of the orbit, and that the sphere of the �xed stars,

situated about the same entre as the sun, is so great that the irle in whih he supposes the earth to revolve

bears suh a proportion to the distane of the �xed stars as the entre of the sphere bears to its surfae.

Now it is easy to see that this is impossible. For, sine the entre of the sphere has no magnitude, we annot

oneive it to bear any ratio whatever to the surfae of the sphere. We must however take Aristarhus to

mean this: Sine we oneive the earth to be, as it were, the entre of the universe, the ratio whih the earth

bears to what we desribe as the \universe" is the same as the ratio whih the sphere ontaining the irle

in whih he supposes the earth to revolve bears to the sphere of the �xed stars. For he adapts the proofs of

his results to a hypothesis of this kind, and in partiular he appears to suppose the magnitude of the sphere

in whih he represents the earth as moving to be equal to what we all the \universe."

I say then that, even if a sphere were made up of sand as great as Aristarhus supposes the sphere of the

�xed stars to be, I shall still prove that, of the numbers named in the Priniples, some exeed in multitude

the number of the sand whih is equal in magnitude to the sphere referred to, provided that the following

assumptions be made.

First, the perimeter of the earth is three hundred myriad stadia and no greater, though some have tried

to show, as you know, that this length is thirty myriad stadia. But I, surpassing this number and setting the

size of the earth as being ten times that evaluated by my predeessors, suppose that its perimeter is three

hundred myriad stadia and not greater.

2. Seond, that the diameter of the earth is greater than the diameter of the moon and that the diameter

of the sun is greater than the diameter of the earth. My hypothesis is in agreement with most earlier

astronomers.

3. Third hypothesis: the diameter of the sun is thirty times larger than that of the moon and not

greater, even though among earlier astronomers Eudoxus tried to show it as nine times larger and Pheidias,
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my father, as twelve times larger, while Aristarhus tried to show that the diameter of the sun lies between

a length of eighteen moon diameters and a length of twenty four moon diameters; but I, surpassing this

number as well, suppose, so that my proposition may be established without dispute, that the diameter of

the sun is equal to thirty moon diameters, and not more.

4. Finally, we state that the diameter of the sun is greater than the side of the polygon of one thousand

sides insribed in the great irle of the universe. I make this hypothesis beause Aristarhus found that

the sun appears as the seven hundred and twentieth part of the irle of the zodia. While examining this

question I have, for my part tried in the following manner, to show with the aid of instruments, the angle

subtended by the sun, having its vertex at the eye. Clearly, the exat evaluation of this angle is not easy sine

neither vision, hands, nor the instruments required to measure this angle are reliable enough to measure it

preisely. But this does not seem to me to be the plae to disuss this question at length, espeially beause

observations of this type have often been reported. For the purposes of my proposition, it suÆes to �nd

an angle that is not greater than the angle subtended at the sun with vertex at the eye and to then �nd

another angle whih is not less than the angle subtended by the sun with vertex at the eye. A long ruler

having been plaed on a vertial stand plaed in the diretion of where the rising sun ould be seen, and a

little ylinder was put vertially on the ruler immediately after sunrise. Then, the sun being at the horizon,

and ould be looked at diretly, the ruler was oriented towards the sun and the eye at the extremity of the

ruler. The ylinder being plaed between the sun and the eye, oludes the sun. The ylinder is then moved

further away from the eye and as soon as a small piee of the sun begins to show itself from eah side of the

ylinder, it is �xed. If the eye were really to see from one point, tangents to the ylinder produed from the

end of the ruler where the eye was plaed would make an angle less than the angle subtended by the sun

with vertex at the eye. But sine the eyes do not see from a unique point, but from a ertain size, one takes

a ertain size, of round shape, not smaller than the eye and one plaes it at the extremity of the ruler where

the eye had been plaed. If one produes tangents to this size and to the ylinder, the angle between these

lines is smaller than the angle subtended by the sun with vertex at the eye. And here is the way one �nds

the size not smaller to the eye: one takes two small thin ylinders of the same width, one white, the other

not, and one plaes them in front of the eye, the white one at some distane, and the other one whih is not

white as lose to the eye as possible without touhing the fae. In this way, if the small ylinders hosen are

smaller than the eye, the ylinder neighboring the eye is enompassed in the visual �eld and the eye sees the

white ylinder. If the ylinders are muh smaller, the white one is ompletely seen. If they are not muh

smaller, one sees parts of the white one and parts of the one neighboring the eye. But if one hoose ylinders

of appropriate width one of them oludes the other without overing a larger spae. It is therefore lear

that the width of ylinders produing this e�et is not smaller than the dimensions of the eye. As for the

angle not smaller than the angle subtending the sun with vertex at the eye, it was taken as follows: The

ylinder being plaed on the ruler at a distane whih bloks all of the sun, if one produes from the end of

the ruler where the eye is plaed tangent lines to the ylinder, the angle made by these lines is not smaller

than the angle subtended by the sun with vertex at the eye. A right angle being measured by the angles

taken in this way, the angle plaed at the point is found to be the one hundred and sixty fourth part of a

right angle, while the smallest angle is found to be greater to the two hundredth part of a right angle. It

is therefore lear that the angle subtended by the sun with vertex at the eye is also smaller than the one

hundred and sixty fourth part of a right angle, and greater than the two hundredth part of a right angle.
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With these measurements ompleted, one shows that the diameter of the sun is greater than the side of the

polygon with one thousand sides insribed in the great irle of the universe. Let us imagine then a plane

passing through the entre of the sun, the entre of the earth and the eye at the instant when the sun �nds

itself a little above the horizon; that this plane uts the universe at the irle AB�, the earth at the irle

�EZ, and the sun at the irle �H . Let � be the entre of the earth, K the entre of the sun, and let �

be the eye; we produe from � the tangents ��, �� to the irle �H with ontat points N and T , and

from � the tangents �M and �O with ontat points X and P . Let A and B be the points of intersetion

of the irle AB� and the lines �M and �O. Thus �K is greater than �K from the hypothesis that the

sun �nds itself above the horizon. If follows that the angle ontained between �� and �� is greater than

the angle ontained between �M and �O. But the angle ontained between �� and �� is greater than

the two hundredth part of a right angle sine it is equal to the angle subtended by the sun with vertex at

the eye; and onsequently, the angle ontained between �M and �O is less than the one hundred and sixty

fourth part of a right angle and the segment of the line AB is less than the hord of the irular setor whih

is the six hundred and sixty �fth part of the irle AB�. But the perimeter of the polygon in question has

with the radius of the irle AB� a ratio less than fourty four to seven beause the ratio of the perimeter of

every polygon insribed in a irle to the radius of the irle is less than the ratio fourty four to seven. You

know, in fat, that I have shown that in every irle the perimeter is greater, by a quantity smaller than

the seventh, than triple the diameter and that the perimeter of the insribed polygon is smaller than this

irumferene. The ratio of BA to �K is thus less than the ratio of eleven to one thousand one hundred

and fourty eight. It follows that BA is smaller than a hundredth �K. But the diameter of the irle �H is

equal to BA sine half of �H , the segment �A, is equal to KP . The segments �K and �A are in fat equal

and from their endpoints perpendiulars are produed of equal angle. It is thus lear that the diameter of

the irle �H is less than the hundredth part of �K. Moreover, the diameter E�� is less than the diameter

of the irle �H sine the irle �EZ is less than the irle �H . If follows that the sum of �� and K� is

less than the hundredth part of �K so that the ratio of �K to �K is less than the ratio of one hundred to

ninety nine. And as long as �� is less than �T , the ratio of �P to �T is less than the ratio of one hundred

to ninety nine. But sine in the right triangles �KP and �KT the sides KP and KT are equal and the

sides �P and �T unequal, �P being larger, the ratio of the angle ontained between the sides �T and �K

to the angle ontained between the �P and �K is greater than the ratio of �K to �K, but less than the

ratio of �P to �T . For if in two right triangles two of the sides ontaining the right angle are equal and the

two others unequal, then the larger angle opposite the unequal sides has to the smaller of these angles a ratio

greater than the ratio of the greater hypotenuse to the smaller, but smaller than the ratio of the greater side

to the right angle to the smaller. As a onsequene, the ratio of the angle ontained between �� and ��

to the angle ontained between �O and �M is less than the ratio of �P to �T whih is itself less than the

ratio of one hundred to ninety nine. It follows that the ratio of the angle ontained between �� and �� is

greater than the two hundredth part of a right angle, the angle ontained between �M and �O is greater

than ninety nine twenty thousandths of a right angle; and as a onsequene, this angle is greater than one

two hundred and third of a right angle. The segment BA is thus greater than the hord of the setor whih

is a eight hundred and twelfth part of the irle AB�. But it is to the line segment AB that the diameter

of the irle is equal to. It is therefore lear that the diameter of the irle is greater than the side of the

polygon of one thousand sides.
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II. These relations being given, one an also show that the diameter of the universe is less than a line

equal to a myriad diameters of the earth and that, moreover, the diameter of the universe is less than a

line equal to one hundred myriad myriad stadia. As soon as one has aepted the fat that the diameter

of the sun is not greater than thirty moon diameters and that the diameter of the earth is greater than the

diameter of the moon, it is lear that the diameter of the sun is less than thirty diameters of the earth. As

we have also shown that the diameter of the sun is greater than the side of the polygon of one thousand

sides insribed in the great irle of the universe, it is lear that the perimeter of the indiated polygon of

one thousand sides is less than one thousand diameters of the sun. But the diameter of the sun is less than

thirty earth diameters so it follows that the perimeter of the polygon of one thousand sides is less than thirty

thousand earth diameters. Given that the perimeter of the polygon of one thousand sides is less than thirty

thousand earth diameters and greater than three diameters of the universe{we have shown in fat that in

every irle the diameter is less than one third the perimeter of any regular polygon insribed in the irle

for whih the number of sides is greater than that of the hexagon{the diameter of the universe is less than a

myriad earth diameters. One has thus shown that the diameter of the universe is less than a myriad earth

diameters; that the diameter of the universe is less than one hundred myriad myriad stadia, whih omes

out of the following argument; sine, in fat, we have supposed that the perimeter of the earth is not greater

than three hundred myriad stadia and that the perimeter of the earth is greater than triple the diameter

beause in every irle the irumferene is greater than triple the diameter, it is lear that the diameter

of the earth is less than one hundred myriad stadia. Given that the diameter of the universe is less than a

myriad earth diameters it is lear that the diameter of the world is less than one hundred myriad myriad

stadia. These are my hypotheses regarding sizes and distanes. Here now is what I assume about the subjet

of sand: if one has a quantity of sand whose volume does not exeed that of a poppy{seed, the number of

these grains of sand will not exeed a myriad and the diameter of the grains will not be less than a fourtieth

of a �nger{breadth. I make these hypotheses following these observations: poppy seeds having been plaed

on a polished ruler in a straight line in suh a way that eah touhes the next, twenty �ve seeds oupied a

spae greater than one �nger{breadth. I will suppose that the diameter of the grains is smaller and to be

about a fourtieth of a �nger{breadth for the purpose of removing any possibility of ritiizing the proof of

my proposition

III. These are thus my hypotheses; but I think it useful to explain myself about the naming of numbers

so that those readers, not having been able to get hold of my book addressed to Zeuxippus, may not be

thrown o� by the absene in this book of any indiation of the subjet of this nomenlature. It so happens

that tradition has given to us the name of numbers up to a myriad and we distinguish enough numbers

surpassing a myriad by enumerating the number of myriads until a myriad myriad. We will therefore all

�rst numbers those whih, aording to this nomenlature, go up to a myriad myriad. We will all units

of seond numbers the myriad myriad of �rst numbers and we will ount among seond number units and,

starting with units, tens, hundreds, thousands, myriads, until a myriad myriad. We will all one again all

third numbers a myriad myriad of seond numbers and we will ount among third numbers, starting with

units, tens, hundreds, thousands, myriads, until the myriad myriad. In the same way we will all units of

fourth numbers a myriad myriad of third numbers, units of �fth numbers a myriad myriad of fourth numbers,

and ontinuing in this way the numbers will be distinguishable until the myriad myriad of of myriad myriad

numbers.
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Numbers named in this way ould ertainly suÆe but it is possible to go still further. Let us in fat

all numbers of the �rst period the numbers given up to this point and units of �rst numbers of the seond

period the last number of the �rst period. Furthermore, all the unit of seond numbers of the seond period

the myriad myriad of �rst numbers of the seond period. In the same way, the last of these numbers will be

alled the unit of third numbers of the seond period, and ontinuing in this way, progressing through the

numbers of the seond period will have their names up to the myriad myriadth of myriad myriad numbers.

The last number of the seond period will be in turn alled the unit of the �rst numbers of the third period,

and so forth until a myriad myriad units of myriad myriadth numbers of the myriad myriadth period.

These numbers having been named, if numbers are ordered by size starting from unity and if the number

losest to unity is the tens, the �rst eight of these inluding the unity will belong to the numbers alled �rst

numbers, the following eight numbers alled seond, and the others in the same way by the distane of their

otad of numbers to the �rst otad of numbers. The eighth number of the �rst otad is thus one thousand

myriads and the �rst number of the seond otad, sine it multiplies by ten the number preeding it, will

be a myriad myriad and this number is the unit of the seond numbers. The eight number of the seond

otad is one thousand myriad of seond numbers. The �rst number of the third otad will one again be,

as it multiplies by ten the preeding number, a myriad myriad of seond numbers, the unity of the third

numbers. It is lear that the same will hold as indiated for any otad.

It is useful to know what follows. If numbers are in proportion starting from unity and some whih

are in the same proportion are multiplied to eah other, then the produt will be inreased from the larger

of the fators by as many numbers as the smaller number is far in proportion to unity and it will be

inreased from unity by the sum minus one of the distane of the numbers away from unity. In fat, let

A;B;�;�; E; Z;H;�; I;K;� be in proportion starting from unity, and let A be unity. Multiply � by �

and let X be the produt. Let us take in the proportion � whose distane to � holds as many numbers as

the distane from � to unity. It must be shown that X equals �. If, among the numbers in proportion,

the distane from � to A ounts as many numbers as that from � to �, the ratio of � to A equals the

ratio of � to �. But � is the produt of � by A from whih it follows that � is the produt of � by �,

so � is equal to X . It is therefore lear that the produt is in the proportion and that its distane to the

largest fator ounts as many numbers as the distane of the smaller fator to unity. But it is also lear that

this produt is inreased, from unity, by the sum minus one, of the distanes of the numbers � and � to

unity; for A;B;�;�; E; Z;H;� are the numbers by whih � is inreased from unity, and I;K;� are, up to

a number, those by whih � is inreased from unity; by adding � one gets the sum of the distanes.

IV. The preeding being in part assummed and in part proved, I will now prove my proposition. As we

have assumed that the diameter of a poppy{seed is not smaller than a fourtieth of a �nger{breadth, it is

lear that the volume of the sphere having diameter one �nger{breadth does not exeed that of sixty four

thousand poppy{seeds; for this number indiates how many times it is the multiple of the sphere having as

diameter one fourtieth of a �nger{breadth; it has in fat been shown that spheres are related to eah other

as the ubes of their diameters. As we have also assumed that the number of grains of sand ontained in

one poppy{seed does not exeed a myriad, it is lear that, if the sphere having diameter one �nger{breadth

were �lled with sand, the number of grains would not exeed sixty four thousand myriads. But this number

represents six units of seond numbers inreased by four thousand myriad of �rst numbers, and is thus less

than ten units of seond numbers. The sphere with diameter one hundred �nger{breadths is equivalent to
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one hundred myriad spheres of diameter one �nger{breath, sine spheres are related to eah other as the

ubes of their diameters. If one now had a sphere �lled with sand of the size of the sphere of diameter one

hundred �nger{breadths, it is lear that the number of grains of sand would be less than the produt of

ten myriad seond numbers and one hundred myriads. But sine ten units of seond numbers make up the

tenth number starting from unity in the proportional sequene of multiple ten, and the one hundred myriads

of the seventh number starting from unity in the same proportional sequene, it is lear that the number

obtained will be the sixteenth starting from unity in the same proportional sequene. For we have shown

that the distane of this produt to unity is equal to the sum of, minus one, of the distane from unity of

its two fators. From these sixteen numbers the �rst eight are among, with unity, the numbers alled �rst

numbers, the following eight are part of the seond numbers, and the last of these is one thousand myriad

seond numbers. It is now evident that the number of grains of sand whose volume is equal to one hundred

�nger{breadths is less than one thousand myriad seond numbers. Similarly, the volume of the sphere of

diameter one myriad �nger{breadths is one hundred myriad times the volume of the sphere of diameter one

hundred �nger{breadths. If one now had a sphere, �lled with sand, of the size of the sphere with diameter

a myriad �nger breadths, it is lear that the number of grains of sand would be less than the produt of

one thousand myriads of seond numbers and one hundred myriads. But sine one thousand myriad seond

numbers are the sixteenth number starting from unity in the proportional sequene and that one hundred

myriad are the seventh number starting from unity in the same proportional sequene, it is lear that the

produt will be the twenty seond number starting from unity in the same proportional sequene. Of these

twenty two numbers, the �rst eight, with unity, are among the numbers alled �rst numbers, the following

eight are among the numbers alled seond, and the six remaining numbers are alled third numbers, the last

of whih being ten myriad third numbers. It is then lear that the number of grains of sand whose volume

is equal to a sphere of diameter of a myriad �nger{breadths is less than ten myriads of third numbers. And

sine the sphere with diameter one stade is smaller than the sphere with diameter a myriad �nger{breadths,

it is also lear that the number of grains of sand ontained in a volume equal to a sphere with diameter one

stade is less than ten myriad third numbers. Similarly, the volume of a sphere of diameter one hundred stadia

is one hundred myriad times the volume of a sphere of diameter one stade. If one now had a sphere, �lled

with sand, of the size of the sphere with diameter one hundred stadia, it is evident that the number of grains

of sand would be less than the produt of ten myriad third numbers with one hundred myriad. And sine ten

myriad third numbers are the twenty seond numbers, starting from unity, in the proportional sequene, and

that one hundred myriad are the seventh number starting from unity in the same proportional sequene, it

is lear that the produt will be the twenty eighth number starting from unity in the proportional sequene.

Of these twenty eight numbers, the �rst eight, with unity, are part of the numbers alled �rst numbers, the

following eight are seond numbers, the following eight are third numbers, and the four remaining are alled

fourth, the last being one thousand units of fourth numbers. It is then evident that the number of grains of

sand whose volume equals that of a sphere of diameter a hundred stadia is less than one thousand units of

fourth numbers. Similarly, the volume of a sphere of diameter a myriad stadia is one hundred myriad times

the volume of a sphere having diameter one hundred stadia. If one then had a sphere, �lled with sand, of the

size of a sphere of diameter a myriad stadia, it is lear that the number of grains of sand would be less than

the produt of one thousand units of fourth numbers with one hundred myriad. Just as one thousand units

of fourth numbers represent the twenty eighth number, starting from unity, in the proportional sequene,
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and one hundred myriad the seventh number in the proportional sequene, starting from unity, of the same

proportional sequene, it is lear that their produt will be, in the same proportional sequene, with unity,

the thirty fourth number starting form unity. But of these thirty four numbers, the �rst eight, with unity,

are among those numbers alled �rst numbers, the following eight among seond numbers, the following

eight among third numbers, the following eight among fourth numbers, and the two remaining among �fth

numbers, the last of these being ten units of �fth numbers. It is thus lear that the number of grains of sand

whose volume is equal to that of a sphere having diameter a myriad stadia will be smaller than ten units of

�fth numbers. And similarly, the volume of a sphere of diameter one hundred myriad stadia is one hundred

myriad times the volume of a sphere of diameter a myriad stadia. If one had then had a sphere, �lled with

sand, of the size of the sphere with diameter one hundred myriad stadia, it is lear that the number of grains

of sand would be smaller than the produt of ten units of �fth numbers and one hundred myriads. As the ten

units of �fth numbers represent the thirty fourth number starting from unity in the proportional sequene,

and one hundred myriads the seventh number starting from unity in the same proportional sequene, it is

lear that the produt will be, in the same proportional sequene, the fourtieth number starting from unity.

But of these fourty numbers, the �rst eight, with unity, are among the numbers alled �rst numbers, the

eight following are seond numbers, the eight following are third numbers, the eight following are fourth

numbers, the eight following are �fth numbers, the last of these being one thousand myriad �fth numbers.

It is therefore lear that the number of grains of sand whose volume is equal to that of a sphere of diameter

one hundred myriad stadia is less than one thousand myriad �fth numbers. But the volume of a sphere of

diameter a myriad myriad stadia is one hundred myriad times the sphere of diameter one hundred myriad

stadia. Thus, if one had a sphere, �lled with sand, of the size of a sphere of diameter a myriad myriad

stadia, it is lear that the number of grains of sand would be less than the produt of one thousand myriad

�fth numbers by one hundred myriads. However, sine one thousand myriad �fth numbers represent the

fourtieth number, starting from unity, of the proportional sequene, and one hundred myriad the seventh

number starting from unity in the same proportional sequene, it is lear that the produt will be the fourty

sixth number starting from unity. Of these fourty six numbers, the �rst eight, with unity, are part of the

numbers alled �rst numbers, the eight following seond numbers, the eight following third numbers, the

eight following fourth numbers, the eight following �fth numbers, and the six left over are numbers alled

sixth, the last among being ten myriads of sixth numbers. It is thus lear that the number of grains of

sand whose volume is equal to a sphere of diameter a myriad myriad stadia is smaller than ten myriad sixth

numbers. But the volume of a sphere of diameter one hundred myriad myriad stadia is one hundred myriad

times the multiple of a sphere of diameter a myriad myriad stadia. Thus, if one had a sphere, �lled with sand,

of the size of a sphere of diameter one hundred myriad myriad stadia, it is lear that the number of grains of

sand would be smaller than the produt of ten myriad sixth numbers by one hundred myriad. But, sine ten

myriad sixth numbers represent the fourty sixth number, starting from unity, in the proportional sequene,

and one hundred myriad the seventh number starting from unity in the same proportional sequene, it is lear

that the produt will be the �fty seond number starting in the same proportional sequene. But of these

�fty two numbers, the �rst fourty eight, with unity, belong to numbers alled �rst numbers, seond numbers,

third, fourth, �fth, and sixth, and the the four remaining are among numbers alled seventh numbers, the

last of them being one thousand units of seventh numbers. It is thus lear that the number of grains of sand

in a volume equal to a sphere whose volume is equal to that of a sphere of diameter one hundred myriad
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myriad stadia is smaller than one thousand units of seventh numbers.

As we shown that the diameter of the universe is less than one hundred myriad myriad stadia, it is lear

that the number of grains of sand �lling a volume equal to that of the universe is itself less than one thousand

units of seventh numbers. We have thus shown that the number of grains of sand �lling a volume equal to

that of the universe, as the majority of astronomers understand it, is one thousand units of seventh numbers;

we will now show that even the number of grains of sand �lling a volume equal to the sphere as large as

Artistarhus proposed for the �xed stars, is smaller than one thousand myriad eighth numbers. As we have

assumed, in fat, that the ratio of the earth to what we ommonly all the universe is equal to the ratio of

this universe to the sphere of �xed stars as proposed by Aristarhus, the two spheres have the same ratio

to eah other. But it has been shown that that the diameter of the universe is less than a length a myriad

times the multiple of the diameter of the earth. It is thus lear that the diameter of the sphere of �xed stars

is itself smaller to a length a myriad times the diameter of the universe. But sine the sphere have the ratio

among themselves of their diameters, it is lear that the sphere of �xed stars, as Aristarhus proposes, is less

than a volume a myriad myriad myriad times a multiple the volume of the universe. But we have shown

that the number of grains of sand �lling a volume equal to that of the world is less than a thousand units

of seventh numbers; it is therefore evident that that if a sphere, as large as Aristarhus supposes that of the

�xed stars to be, were to be �lled with sand, the number of grains of sand would be less than the produt

of one thousand units [of seventh numbers℄ by a myriad myriad myriad. And sine one thousand units of

seventh numbers represent the �fty seond number in the reiproal sequene starting from unity, and a

myriad myriad myriads the thirteenth number starting from unity in the same proportional sequene, it is

lear that the produt will be the sixty fourth number starting from unity in the same proportional sequene;

but this number is the eighth of the eight numbers, whih is one thousand myriads of eight numbers.

It is therefore obvious that the number of grains of sand �lling a sphere of the size that Aristarhus lends

to the sphere of �xed stars is less than one thousand myriad eighth numbers.

I oneive, King Gelon, that among men who do not have experiene of mathematis, suh a thing

might appear inredible. On the other hand, those who know of suh matters and have thought about the

distanes and sizes of the earth, the sun, the moon, and the universe in its entirety will aept them due to

my argument, and that is why I believed that you might enjoy having brought it to your attention.
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2 Introdution

\The Sand Rekoner" might be the best introdution to anient siene:

1. It is addressed to the King of Syrause, so may be the �rst researh{expository paper ever written.

2. In its goal of addressing \innumeray", it is relevant to a modern audiene.

3. It ontains many details about anient astronomy, but also motivates them by presenting them in the

ontext of solving a spei� problem.

4. The �rst known example of an astronomial experiment.

5. The �rst example of psyhophysis, the study of human beings as measuring instruments.

6. Faes the problem of naming and manipulating large numbers without using modern notation.

The paper addresses the problem of \innummeray" in anient Greee, in partiular, they did not believe

that there were numbers great enough to desribe the amount of sand. This belief was ommon and \sand"

was synonymous with \unountable." In order to retify this situation, Arhimedes wrote the paper to a

non{mathematial audiene, King Gelon, King of Syrause, and the paper an therefore be desribed as the

�rst researh expository paper.

Arhimedes sets for himself the task to name a number larger than the number of sand not just on a

beah, or even on all of the earth, but the idealized question of naming a number that would be larger than

the number of sand that ould �ll up the whole universe.

The reason for this generalization is lear. By taking the largest amount of sand possible, one an give

an upper bound that will apply to any possible amount of sand, and thus solve the problem ompletely.

In order to solve the problem, Arhimedes needs to make some physial assumptions, and then apply

mathematial tehniques to them. The paper thus has two themes: (a) physial assumptions based on

observational data, (b) mathematial analysis.

Sine Arhimedes was a mathematiian, the mathematial analysis is ompletely rigorous, but this is

learly not possible for the physial part of the paper. This part of the paper is also written in two di�erent

styles. The experiments that Arhimedes is able to perform himself are analyzed with extreme preision,

muh more than the other data will allow, while experiments that he merely reports are overestimated by a

fator of 10. This last strategy is suessful in that he atually overestimates the distane to the sun, even

though ontemporary estimates of the distane to the sun were muh smaller and estimating this distane

is quite diÆult.

In trying to estimate the amount of sand that ould �ll the universe, Arhimedes must �rst address the

de�nition of the universe in order to estimate its size. Arhimedes states that, for the purposes of the paper,

he will adopt the helioentri theory of Aristarhus of Samos. The reason for this is that Arhimedes, in

order not to have his result superseded, needed to �nd the largest model of the universe. He hose the

helioentri theory beause it requires the stars to be muh further away in order to avoid stellar parallax.

This has great historial interest beause it is one of the only referenes to Aristarhus' helioentri theory,

as the work itself is lost.
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Arhimedes notes that Aristarhus was not preise about how far the stars are from the earth, so he

makes the assumption that the distane to the stars is in the same to the radius of the earth's orbit as

the radius of the earth's orbit around the sun is to the radius of the earth. The reasoning behind suh an

assumption is that sine observers on earth do not notie the sun moving loally due to the earth's rotation

(solar parallax) the ratio of the earth's radius to the distane to the sun is large enough to make suh an

e�et unobservable. It follows that putting the stars' distane with respet to the earth's rotation in the

same ratio should exlude any apparent motion of the stars. In e�et, Arhimedes is saying that stellar

parallax equals solar parallax. Symbolially, this would be written as

r

u

d

s

=

d

s

r

e

;

where r

u

is the radius of the universe, i.e., the distane to the stars, d

s

is the distane to the sun, and r

e

is

the radius of the earth. In order to ompute r

u

, Arhimedes must give values for r

e

and d

s

, so he proeeds

to quote estimates of the earth's radius, and in order to estimate d

s

, the relative sizes of the earth, moon,

and sun.

The ontemporary estimates for the irumferene of the earth were quite aurate, for example, Eratos-

thenes' elebrated measurement of yielded approximately 25,000 miles whih is within 1,000 miles of the

atual �gure. Sine Arhimedes has not performed this experiment, he overestimates this by a fator of ten

and arrive at a radius of about 40,000 miles??.

The problem of estimating the distane to the sun is quite diÆult and aurate estimates were not

obtained until the 18th entury. The method that Arhimedes uses is to �rst estimate the size of the moon

relative to the earth, then the size of the sun relative to the moon. One an estimate of the size of the sun

is given, then the distane to the sun an be estimated by measuring the angular size of the sun, as seen on

earth, and using some equivalent form of a trigonometri formula.

Aristarhus of Samos gave a method for estimating the sizes of the moon and sun, but his estimate of

the sun is muh smaller than the atual value. This method �rst estimates the size of the moon, whih an

be done fairly well by estimating the size of the earth's shadow on the moon during a lunar elipse. This

shows that the moon is at least 1/3 the size of the earth. Next, Aristarhus looked at the angle that the

moon and sun make when the moon is exatly half illuminated by the sun. In modern notation, if this angle

is �, then d

m

=d

s

= os �, where d

m

is the distane to the moon. Now the atual value of � is 89

Æ

50

0

, whih is

indistinguishable from 90

Æ

using anient tehniques, but more importantly, deiding when the moon is half

full is too diÆult to make this measurement with anything lose to this level of preision. However, one an

onlude that d

s

> 20d

m

but Arhimedes overestimates this to be d

s

> 30d

m

. Sine the sun and moon have

the same angular diameter with respet to a terrestrial observer, as seen during solar elipses, it follows that

r

s

> 30r

m

> 30=3r

e

= 10r

e

, and the radius of the sun is at least 400,000 miles.

The next step is to ompute the angular size of the sun. This is done with extreme are by Arhimedes

himself. Thus, he is very areful to note that in measuring the angular size of the sun one should take into

aount the size of the eye, as this will a�et the answer slightly. This is of interest as it is the �rst example

of the siene of psyhophysis, i.e., analyzing the human body as an instrument. Furthermore, he also takes

into aount solar parallax, in other words, the fat that his estimate of the distane to the sun is taken from

a measurement on the surfae of the earth, while the atual distane that he is interested in is taken from

the entre of the earth. This is also the �rst known example of solar parallax being taken into aount. As
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an example of the inonsistenies of the paper, note that this adjustment for solar parallax ontradits his

previous impliit assumption that solar parallax is negligible.

From this one an say that apart from the overestimates for the size of the earth and sun, and the distane

from the earth to the sun, Arhimedes is atually omputing the order of magnitude of the answer. In other

words, exept for two steps in the omputation, the estimate will be orret within a fator of ten.

One Arhimedes has olleted the physial data, he then develops a system for naming numbers, sine

the ontemporary Greek system only went up to ten thousand (a myriad) and naming number larger than

ten million (a myriad myriad) was umbersome. His method is to essentially use base 10,000 whih allows

him to name powers of 10,000 up to 10000

10000

. Arhimedes then onsiders the sequene of powers of 10

and essentially states the formula 10

a

10

b

= 10

a+b

.

The paper ends with a very longwinded desription of how to use the estimates of the size of a grain of

sand, the earth, and the distane from the earth to the sun in order to get the upper bound 10

63

for the

number of grains of sand in the universe. The main reason for the length is that Arhimedes only allows

himself to use the law of exponents in the form 10

a

10

6

= 10

a+6

.

Thus instead of omputing how many diameters of a grain of sand will be an upper bound for the diameter

of the osmos then ubing this number to �nd the ratio of volumes, he onsiders separately eah inrease in

diameter by a fator of one hundred = 10

2

, and then multiplies the ratio of volumes by 100 myriad (= 10

6

).

3 The problem

The Greek title of the paper is  ������� meaning having to do with sand [26℄. The Latin translation is

Arenarius whih also means having to do with sand, but an be understood as meaning arithmeti, as these

were done on sand. From this perspetive, the Latin title might be the most appropriate.

The paper is addressed to King Gelon, son of King Hieron, who were o{rulers of Syrause, the ity where

Arhimedes lived, so one way of estimating the date of the paper would be to know when Gelon aeded to

the throne.

Arhimedes refers to the belief among his ontemporaries that sand was in�nite or unountable. This is

on�rmed in a passage from Pindar's Olympi Ode II [28℄: \. . . sand esapes ounting" ( ���o� �����o�

�����������). Moreover, the word  �����o��o� (sand{hundred) was used to denote a very large number,

as in the modern English word \zillion." The exaggerated form  �����o������o� (sand dune hundred)

appears in the opening lines of Aristophanes' play The Arhanians [6, p.6℄ a typial English translation being

[7, p. 101℄:

\How often have I hewed my heart with rage! My pleasures? Very few; in fat just four. My

pains? Far more than all the grains of sand."

A similar statement appears in the Iliad IX, 385 [21℄: \Not if his gifts outnumbered the sea sands or all

the dust grains in the world would Agam�emnon ever appease me. . . "

The unountability of sand also appears 21 times in The Bible [33, p. 1179℄. For example, in Genesis

32:12: \And thou saidst, I will surely do thee good, and make thy seed as the sand of the sea, whih annot

be ounted for multitude." It is a omment on the lak of impat of Arhimedes' work that similar omments
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appear in the New Testament, e.g., Hebrews 11:12: \So many as the stars of the sky in multitude, and as

the sand whih is by the seashore innumerable."

Given the question of ounting grains of sand, Arhimedes immediately generalizes this question not just

to the harder problem of ounting the sand that an be seen on a single beah, or in Siily, but to the entire

surfae and volume of the earth.

The language of Arhimedes uses to express this is to onsider \a mass made up of sand. . . as large as the

mass of the earth, inluding in it all the seas and hollows of the earth �lled up to the height of the largest

mountain." In this way, Arhimedes de�nes a sphere and its interior with radius the height of the highest

mountain. This passage is slightly ambiguous sine the term \�lled{up" an be interpreted as �lling{up with

sand.

However, Arhimedes does not stop with this harder problem but immediately goes on to �nd the largest

possible amount of sand. His objet seems to avoid having his estimate superseded by a larger example.

This ompetitive approah is also seen in his sending inomplete or false proofs as a test to his readers and

the (highly speulative) explanations that the diÆulty of his Cattle Problem was in response to having his

works superseded by Apollonius [35℄.

4 Physial assumptions

4.1 The size of the universe

In order to �ll the universe with sand, Arhimedes has to give a onrete de�nition of the universe. In the

paper, he laims that astronomers de�ned the universe to be the sphere with enter at the entre of the

earth and radius the distane from the entre of the earth to the entre of the sun.

Now, sine the stars are so far away that only their angular separation is observable to the naked eye,

they all seem to be the same distane from an observer whih gives the starry sky a spherial appearane.

It was therefore natural for anient astronomers to believe that the \�xed stars," i.e., all stars but the sun,

moon, and planets, were on one sphere.

However, sine the sun, moon, and planets, move relative to the stars, these were eventually thought of

as being loser to the earth than the rest of the stars. For example, it is lear that, sine the moon obsures

the sun during a solar elipse, it is is loser than the sun. Sine the sun and moon retain approximately the

same angular size, these were assumed to travel on their own spherial shells, as were the �ve known planets,

Merury, Venus, Mars, Jupiter, and Saturn. However, the rate of rotation of these bodies was assumed to be

proportional to their distane to the earth, so that the moon was losest, and Saturn the furthest. In, fat

in Timaeus, [29℄ Plato gives the order as: moon, sun, Venus, Merury, Mars, Jupiter, Saturn, stars (there is

a problem ordering Merury, Venus, and the sun, sine their periods of rotation are roughly equal).

The theory of spherial shells was re�ned by Eudoxus (a. 408B.C.{355B.C.) to explain the non{irular

motions of the sun, moon, and planets (for example, the fat that annular solar elipses sometimes our

implies that the sun or the moon does not have a irular orbit).

Furthermore, in Meterologia Aristotle states [17, p. 331℄:

\Besides, if the fats as shown in the theorems of astronomy are orret, and the size of the

sun is greater than that of the earth, while the distane of the stars from the earth is many times
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greater than the distane of the sun, just as the distane of the sun from the earth is many times

greater than that of the moon, the one marking the onvergene of the sun's rays (after passing

the earth) will have its vertex not far from earth, and the earth's shadow, whih we all night,

will therefore not reah the stars, but all the stars will neessarily be in the view of the sun, and

non of them will be bloked out by the earth."

For the above reasons (note that Arhimedes refers to Eudoxus in this paper) it is not at all lear why

Arhimedes would laim that the sun's orbit was the limit of the universe. Moreover, even if astronomers

used this de�nition in a purely semanti way, it would not serve Arhimedes' purpose in the paper, as it

would still be oneivable to �ll up with sand past the sun all the way to the �xed stars. In fat, Arhimedes

avoids this problem by using a di�erent model of the universe.

4.2 The earth is round

The onept of \entre of the earth" mentioned by Arhimedes learly assumes the fat that the earth is

not at. Indeed, the fat that the earth is round had been known for enturies before Arhimedes, namely

by Pythagoras (a. 572B.C.{500B.C.) who is believed to be the �rst person to have proved this. Arguments

were later written by Aristotle [5, XIV, p 252℄, who noted that the earth makes a round shadow during

an elipse of the moon. The shadow is known to be the earth's beause a lunar elipse only ours on

a full moon, when the sun and moon are observed to be in in opposition, i.e., in a straight line and at

opposite ends of the sky. This argument was ritiized by Neugebauer [27, p. 1093℄, who pointed out that

a nonspherial objet an also make a irular shadow. Another objetion is the phenomenon, observed

by anient astronomers, of \paradoxial" lunar elipses ourring at dusk in whih both the sun and the

fully elipsed moon are simultaneously visible. This would ontradit that the moon, earth, and sun are in

alignment, and that it is the earth's shadow that auses the elipse. One anient astronomer, Cleomedes

(a. 150B.C.) atually gave the orret explanation, namely that it was aused by the refration of the

earth's atmosphere whih bent the light and aused the setting sun to be seen when it was atually below

the horizon so anient astronomers also knew that the sunset is an optial illusion), see the translation by

Heath in [18, p. 162{166℄ of Cleomedes argument in De Motu Cirulari Corporum Caelestium [11℄. The

amount of distortion of a elestial objet at the horizon by refration is now known to be about 34

0

or about

the same size as the angular diameter of the sun or moon [16, p. 95℄.

Better reasons for the spherial shape of the earth are given by Ptolemy [30, I.4℄:

\That also the earth, taken as a whole, is sensibly spherial,

Now, that also the earth taken as a whole is sensibly spherial, we ould most likely think

out in this way. For again it is possible to see that the sun and moon and the other stars do

not rise and set at the same time for every observer on the earth, but always earlier for those

living towards the orient and later for those living towards the oident. For we �nd that the

phenomena of elipses taking plae at the same time, espeially those of the moon, are not

reorded at the same hours for everyone{that is, relatively to equal intervals of time from noon;

but always �nd later hours reorded for observers towards the orient than for those towards the

oident. And sine the di�erenes in the hours is found to be proportional to the distanes
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between the plaes, one would reasonably suppose the surfae of the earth spherial, with the

result that the general uniformity of urvature would assure every part's overing those following

it proportionately. But this would not happen if the �gure were any other, as an be seen from

the following onsiderations.

For if it were onave, the rising stars would appear �rst to people towards the oident; and

if it were at, the stars would rise and set for all people together and at the same time; and if it

were a pyramid, a ube, or any other polygonal �gure, they would again appear at the same time

for all observers on the same straight line [fae℄. But none of these things appears to happen.

It is further lear that it ould not be ylindrial with the urved surfae turned to the risings

and settings and the plane bases to the poles of the universe, whih some think more plausible.

For then never would any of the stars be always visible to any of the inhabitants of the urved

surfae, but either all the stars would both rise and set for observers or the same stars for an

equal distane from either of the poles would always be invisible to all observers. Yet the more

we advane towards the north pole, the more the southern stars are hidden and the northern

stars appear. So it is lear here the urvature of the earth overing parts uniformly in oblique

diretions proves its spherial form on every side. Again, whenever we sail towards mountains

or any high plaes from whatever angle in whatever diretion, we see their bulk little by little

inreasing as if they were arising from the sea, whereas before they seemed submerged beause

of the urvature of the water's surfae."

Note that Ptolemy's is very areful to show that the earth's urvature is the same in all diretions.

4.3 Aristarhus and the helioentri theory

Most people believe that it was Copernius who �rst proposed the helioentri theory of the universe, so it

might ome as a surprise that this theory was proposed some 1800 years earlier by Aristarhus of Samos.

Though some have laimed that Copernius was aware that Aristarhus had a �rst laim on this theory,

this view has reently been hallenged by Gingerih in his paper Did Copernius owe a debt to Aristarhus?

[15℄. A semi helioentri theory, i.e., one where Merury and Venus orbit the sun whih orbits the earth, is

laimed to have been proposed by Heralides Pontus (a. 388B.C.{315 B.C.). This view has been hallenged

by Neugebauer [27, p. 320℄.

Aristarhus' work on the helioentri theory has been lost and is only known through referenes to it suh

as this one. Another works of his have survived [4℄ and the ability that he shows in this paper implies that his

helioentri theory was based on sound theoretial priniples [17℄, and it should be noted that Arhimedes

takes it seriously in this paper.

The reason why Arhimedes mentions Aristarhus' theory is explained by the end of the last sentene:

\. . . and that the sphere of �xed stars, situated about the same entre as the sun, is so great

that the irle in whih he supposes the earth to revolve bears suh a proportion to the distane

of the �xed stars as the entre of the sphere bears to its surfae."

The point is that in a helioentri theory, the stars must be muh farther away than in a geoentri theory

(see [23℄ for an analysis of the philosophial impliations of this \larger" universe). Thus Arhimedes went
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shopping around for di�erent theories of the universe trying to �nd the one with largest size so that his

omputation would not be superseded

The reason that the helioentri theory leads to a larger universe is the phenomenon of parallax, i.e., that

an objet whih is quite lose seems to be at a di�erent angle if viewed from a slightly di�erent position.

One example is if you hold an objet a foot away from your eyes, then it seems di�erent when viewed from

one eye or the other, another one is that when you are moving, objet that are lose seem to move while

faraway objet don't (e.g., the moon \follows" you when you walk). So in a helioentri model, if the stars

were too lose, i.e., relative to the distane of the earth to the sun, then in a six month period, the angle at

whih a star would be seen would hange a lot. To avoid the parallax problem, the stars have to be so far

away relative to the distane between the earth and the sun that is no longer observable.

Aristarhus' resolution of the parallax problem is to make the ratio of distane of the stars to radius of

the earth's orbit around the sun very muh larger, and essentially in�nitely large sine the ratio he gives, as

referred to by Arhimedes, is the ratio of a surfae to a point.

Clearly, this will not do, �rst of all, on logial grounds that the ratio of a surfae to a point makes no

sense, and seondly, an in�nite universe would ontain an in�nite amount of sand. Arhimedes therefore has

to give a meaningful interpretation of Aristarhus' theory of the size of the universe, and he ontinues:

\Now it is easy to see that this is impossible; for, sine the entre of the sphere has no

magnitude, we annot oneive it to bear any ratio whatever to the surfae of the sphere. We

must take Aristarhus to mean this: sine we oneive the earth to be, as it were, the entre of

the universe, the ratio whih the earth bears to what we desribe as the `universe' is the same as

the ratio whih the sphere ontaining the irle in whih he supposes the earth to revolve bears

to the sphere of �xed stars."

The justi�ation for Arhimedes' amendment to Aristarhus' theory is apparent from the phrase: \. . . sine

we oneive the earth to be, as it were, the entre of the universe. . . " Reall that Arhimedes is using the

word \universe" to mean the sphere with earth at the entre and radius the distane from the earth to the

sun, so he is saying that from the vantage point of earth, it looks like the sun is going around in a perfet

irle around the entre of earth. It is reasonable to infer that one should not expet to see a variation in

the sun's position depending on where the sun is viewed from di�erent plaes on the earth (solar parallax).

Arhimedes assumption is thus

Stellar Parallax = Solar Parallax.

It then follows that if the ratio of the radius of the universe to the ratio of the earth's orbit around the sun

is the same as the ratio of the earth's orbit around the sun to the radius of the earth, then there will not be

any stellar parallax problem either (though Arhimedes ontradits this later on when he takes into aount

solar parallax, see below).

Estimating solar parallax is atually quite easy, as is seen in Figure ??. This shows that the parallax of

a distant objet as seen from one end of the earth versus the other end of the earth is exatly equal to the

angular size of the earth seen from the distant objet. This has the immediate onsequene that:

Maximum solar parallax is equal to the angular size of the sun divided by the ratio of the sun's diameter to

the earth's diameter.
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Arhimedes will later assume that: (a) The angular size of the sun is about 1/2 of a degree. (b) The sun

is about ten times larger than the earth. This implies that solar parallax is about 3

0

, or 1/20 of a degree (and

the same value for stellar parallax over a six month period) whih would probably not be observable without

a telesope. (The atual value is about 17

00

:6 on average [16, p. 105℄ and the smaller �gure orresponds to

Arhimedes' underestimation of the size of the sun.)

One ould ask whether it would have been valid to assume that the size of the universe should be taken

to be in the ratio of the distane of the moon relative to the size of the earth. Sine Arhimedes probably

assumed that the angular size of the moon was 1=2 of a degree and that the moon was about 1/3 the size of

the earth, it would follow that the maximum parallax would be 3=2 of a degree whih might be observable

(the atual value is about 2 degrees, on average). This would therefore not make a good hoie.

4.4 The perimeter of the earth

It is now well known that Eratosthenes (a. 276B.C.{??) made a very good estimate of the earth irumfer-

ene [8℄ [24℄, and [34, p. 267℄ for a more ontemporary report by Cleomedes a. 150 B.C.

Eratosthenes' proedure was as follows: He noted that on the summer solstie the sun made no shadow in

the anient ity of Syene (the modern Asswan, Egypt). However, at the same time, in Alexandria, the shadow

at noon made an angle of about 7 degrees, or 1=50 of a full irle. Sine he estimated the distane from

Syene to Alexandria to be 5; 000 stades, this gave a irumferene of 250; 000 stades (note that Ptolemy's

argument that the earth is spherial is required sine Eratosthenes' measurement gives only a irumferene

in the North{South diretion).

In order to hek the auray of Eratosthenes' measurement, one must onvert stades into modern units.

This poses a problem, sine there is no agreement as to the length of this measure. It is given as about 600

feet or about 200 meters in [20℄, where a stadium is de�ned to be the length of an Olympi stadium (or

trak). Boyer [9℄ uses 1 stade� 1=10 mile, while Eves [13℄ gives 1 stade� 559 feet. Heath [19℄ ites Pliny as

giving 1 stade as 516:73 feet.

Heath's de�nition of the stade results in a irumferene of 24; 662 miles, whih is within 50 miles of the

atual �gure. This was atually omputed using the estimate of 252; 000 stade adopted by Hipparhus and

Theon of Smyrna, whih is more onvenient sine this number is divisible by 60.

This number seems a little too aurate, and other writers have given the estimate to be 29; 000 miles

using 1 stade being between 1=7:5 and 1=10 of a Roman mile [10, p. 154℄.

It is important to note that Eratosthenes' measurement is atually independent of units of measurement

sine it gives the irumferene of the earth as 50 times the distane from Syene to Alexandria. Thus any

subsequent estimate an be made by estimating this distane diretly. For example, this ould have been

done by the ontemporaries of Christopher Columbus when estimating the distane from Spain to China.

In any ase, it is lear that 300; 000 stades is an overestimate for all known de�nitions of a stade, and

anyway, Arhimedes overs himself by overestimating by a fator of ten.

Remark. It should be emphasized that Eratosthenes' omputation is simpli�ed by the fat that Syene lies

exatly on the tropi of Caner. This means that on June 21 at high noon, the sun is diretly overhead. If

another ity not at this latitude were hosen, then a omparison of two angles of shadows would have been

required. More importantly, this leads one to suspet that it beause Syene is on the tropi of Caner that
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Eratosthenes though up this method of measuring the irumferene. The qualitative di�erene in shadows

led him to onsider a measurement of the quantitative di�erene in shadows.

4.5 The sizes of the earth, moon, and sun

Arhimedes assumes that the earth is bigger than the moon and that the sun is bigger than the earth. Both

of these an be explained fairly easily, thought the seond statement requires a new idea and a physial

experiment.

To see that the moon is smaller than the sun, reall that in a solar elipse the moon barely overs the

sun (and sometimes its angular diameter an be smaller, as in an annular elipse) and that it is loser than

the sun, sine it obsures it during a solar elipse.

Next, it an be seen that the earth is greater than the moon. For if the earth were the same size or

smaller than the moon, then a lunar elipse, as seen from the moon, would appear to be exatly the same

as a solar elipse does from the surfae of the earth, and so the shadow of the earth would be quite small.

But in fat, the earth shadow during a lunar elipse overs the whole moon.

To show that the sun is greater than the earth requires new ideas that show the following:

(a) The moon is at least 1/4 the size of the earth.

(b) The sun is at least 8 times the size of the moon.

From this it follows that the sun is at least 8=4 = 2 times the size of the earth.

These ideas were introdued by Aristarhus in his paper On the sizes and distanes of the sun and moon

[4℄ who used the following observations

(i) To estimate the size of the earth's shadow on the moon

(Aristarhus estimated it at twie the moon's size, while the true �gure is slightly less than three).

(ii) To observe the angle between the moon and the sun when the moon is exatly half full, i.e., when

the line between the moon and the sun makes a 90

Æ

angle with the line between the observer and the moon.

(Note that this seond method requires the knowledge that the moon's illumination omes from the reeted

light of the sun, a fat that had been disovered by Anaxogoras (a. 500B.C.{428B.C.) two enturies earlier.)

The �rst observation gives a lower limit on the size of the moon, while the seond gives an estimate of

the ratio of the moon's distane to the sun's distane, and so of their relative sizes.

As will be seen in the next setion, the size of the earth shadow on the moon implies that the moon has

a radius at least 1/3 of the earth's. Moreover the atual angle that the moon and sun make when the moon

is half full is 89

Æ

50

0

, so it should be possible to estimate this as being bigger than 83

Æ

, whih has osine less

than 1=8. In other words, suh an estimate shows that the sun is at least 8 times the size of the moon.

Aristarhus used his method to try to get muh more preise information about the sizes of the sun and

moon. Unfortunately, there are many problems with this method. As noted above the atual angle is more

like 89

Æ

50

0

, whih is indistinguishable from 90

Æ

, for example, the horizontal refration disussed above is 34

0

,

so that this e�et alone is of the same order as what needs to be observed, at shallow angles at least.

The other problem is that the exat time when the moon is half full is extremely hard to determine.
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Aristarhus, gave the grossly inaurate �gure of 87

Æ

whih led him to get severely underestimate the

size and distane of the sun. It is now believed that Aristarhus' paper is meant more as an appliation of

his orret idea and as a mathematial exposition of how it ould work [17℄.

Strangely enough, Aristarhus does not give an expliit estimate of the distane to the sun, but his

method does give a lower bound, whih is essentially the one given by Arhimedes. He then states

\It is true that, of the earlier astronomers, Eudoxus delared it to be about nine times as

great, and Pheidias, my father twelve times, while Aristarhus tried to prove that the diameter

of the sun is greater than 18 times but less than 20 times the diameter of the moon."

This passage is interesting in regards to the biographial information that it reveals about Arhimedes'

father. The omputation of Aristarhus that is alluded to is his paper On the sizes and distanes of the sun

and moon, as mentioned above.

The general priniple by whih the size of the moon an be estimated is the following: Under the

assumption that the sun is muh farther away than the moon, the shadow of the earth is roughly the same

size as the earth, at least when it obsures the moon. Thus the ratio of the moon's diameter to the shadow of

the earth during a lunar elipse should roughly be the ratio of the moon's diameter to the earth's diameter.

The method of Aristarhus is simply a preise way to ompute this. What he shows is:

Theorem of Aristarhus. Let s be the radius of the sun, ` the radius of the moon, and t the radius of the

earth. Furthermore, let u be the ratio of the radius of the shadow of the earth to the radius of the moon.

Finally, let  be the angle between the moon and the sun, as seen from the earth when the moon is exatly

half illuminated. Then,

`

t

=

1 + os 

1 + u

;

s

t

=

1 + os 

os (1 + u)

:

The �rst formula has the interesting feature that there is not too muh dependene of  , it ontributes

at most a fator of two. In fat,  will be very lose to 90

Æ

, so that this formula will be

`

t

�

1

1 + u

;

so only the value of u matters. Aristarhus believed that u = 2 so that ` � :33t. Ptolemy later gave the

value `=t = 2

3

5

.

The seond formula is similar exept for the 1= os term. Sine  is lose to 90

Æ

(Aristarhus took it to

be 87

Æ

and the atual value is about 89

Æ

50

0

), os is small, so that there is a lot of instability in the value

of s=t. This makes it lear that no preise alulation of the sun's size is possible using suh methods.

These methods an also give estimates for the distanes of the sun and moon beause the ommon ratio

`=L = s=S is sin �, where �, the angular diameter of the sun, an be measured physially. Aristarhus �rst

reported � = 2

Æ

, but this was quikly orreted to 1=2

Æ

, as is the subjet of the next setion.

Proof of Aristarhus' theorem: One starts with the fat that the moon has almost the same angular

size as the sun, as viewed from earth,

`

L

=

s

S

= � = sin � ;

where � is the angular size of the moon or sun.

19



Now onsider a full lunar elipse. Let D equal the distane of the enter of the earth to where the shadow

of the earth meets at a point. By similar triangles

D

S

=

t

s� t

;

and substituting s = s=� gives

D =

ts

�(s� t)

:

By similar triangles, one also gets

D

t

=

D � L

u`

so that

D =

`t

�(t� u`)

:

Equating these two values for D gives

ts

�(s� t)

=

`t

�(t� u`)

:

Now let L=S = � = os , then also `=s = � (so s=` = 1=�) by the lunar elipse observation. Substituting

this into the last equation and dividing out the ommon fator of t=� gives

`=�

`=� � t

=

`

t� u`

:

This an be simpli�ed to

1

`� �t

=

1

t� u`

;

whih is the same as

1

`=t� �

=

1

1� u`=t

:

This an be solved for x = `=t:

1

x� �

=

1

1� ux

=) 1� ux = x� � =) x =

1 + �

1 + u

:

5 Experiments

I have tried to reprodue Arhimedes' experiment to measure the angular diameter of the sun. My �rst

attempt was on Marh 19, 1997, when I went to Venie Beah, CA, with a meter long ruler, and some

ylindrial weights from a set of hemistry weight. Between 6p.m. and 6:05p.m., I put a ylinder of diameter

9mm. and height 9mm on the ruler, pointed in the diretion of the setting sun. The ylinder seemed to be

about 820mm, but there seemed to be some portion of the sun visible from about 880mm. This was on a

seond attempt. On the �rst attempt, I got distanes of 810mm and 950mm, respetively.

Some preliminary remarks from this are:

1 Arhimedes either had help, or else his ylinders were very small (at most 5mm in diameter) sine anything

larger than 5mm would be 50m away, and so too far to move by yourself while looking at the sun.

2 The weights did not ast a lear shadow, so determining this angle using shadows did not seem pratiable.
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Figure 5.0.1[p℄: Lower bound on the size of the sun

3 The stand Arhimedes refers to had to let the ruler rotate, sine in the seond estimate the sun must be

seen on both sides of the ylinder, so the diretion of the sun has to be preise.

4 The day has to be very lear, as any louds seem to distort the sun when it is on the horizon.

5 Even when the sun was on the horizon, its brightness would still ause light to seem to appear from the

sides of the ylinder.

One an onjeture that Arhimedes ould have done this experiment alone as his exposition in the paper

leads one to believe that he would not trust anyone else to do it for him. Perhaps one way would have

been for him to use a system of pulleys, sine suh methods are attributed to him elsewhere, for example by

Plutarh.

Arhimedes then does further experiments in order to ompensate for the fat that the angle the sun

makes with the eye does not have its vertex at the eye, sine the eye atually sees from an area, not from a

point. In order to ompensate for this, he tries to ompute the diameter of the pupil by taking two ylinders,

one white and one normal, and putting one as lose to the eye as possible so it oludes the white one.

This experiment has a number of problems assoiated with it.

(i) The experiment requires a ylinder that is of about the same size as the pupil, whih requires knowing

its size in the �rst plae.

(ii) The size of the pupil varies aording to light onditions.

In fat, the bounds Arhimedes wants an easily be ahieved without any referene to the pupil. A lower

bound on angular size of the sun an be done as follows:

Take a ylinder and plae it so that you an just see the sun on its edges, then take a smaller ylinder and

plae it so that it just overs the other ylinder. The angle between tangents to the ylinders will be a lower

bound. Similarly one gets an upper bound:

Take a ylinder and plae it so that it just overs the sun, then plae a smaller ylinder so that one an just

see the edges of the larger ylinder. The angle between tangents to the ylinders will be an upper bound.

Note that this method uses fewer ylinders. In any ase, Arhimedes' digression makes him the �rst person

known to take aount human physiology in a physial measurement, the study of whih later beame known

as psyhophysis, a �eld developed by Hermann Helmoltz (1821{1894).

This fat does not seem to be known among experimental psyhologists and there are only a few papers

written on this subjet [25℄ [32℄.

Other ritiisms of this experiment are that
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Figure 5.0.2[p℄: Lower bound on the size of the sun

Figure 5.0.3[p℄: Refration magnifying size

(a) The experiment an also be done with the moon, sine solar elipses show that the sun and moon

have the same angular size. The advantage of this is that the experiment an be done on a less bright objet

(for example, on a partial moon).

(b) Arhimedes does not address the question of the moon illusion, in other words, that the sun and

moon appear to be larger when on the horizon. This is important beause showing that this is in fat an

illusion requires an aurate measurement. In fat, it is easy to show that the sun is not atually loser,

for example, sine it sets at di�erent positions on its orbit at di�erent times of the year, but this does not

explain whether the illusion is aused by something physial, e.g., an atmospheri distortion, or is purely a

produt of human pereption.

In fat, there is a referene to Arhimedes explaining the moon illusion as a onsequene of atmospheri

refration in a ommentary of Theon of Alexandria on Ptolemy's Almagest whih I have translated from [3,

Vol. 4, p. 207℄ (also [2℄):

To refute the opinion that elestial bodies appear larger when they are near the horizon

beause they are seen from a smaller distane, Ptolemy proposes here to analyze a phenomenon

of this kind and to show that it does not our beause of the distane between earth and sky

but that due to the very humid emanations that surround the earth, the visual �eld enounters

a body of air that is denser and that the rays going to the eye through the air are refrated and

thus make the apparent angle at the eye larger as was shown by Arhimedes in his treatise On

atoptria, where he says that objets submerged in water also seem larger, and the more so the

deeper. . . Let the lines E�A and EKB, oriented by refration, as in Arhimedes in his treatise

On atoptria, to the points A and B as we have said.

If this is true, then it has a serious impat on Arhimedes' experiment sine its inlusion in the Sand Rekoner

may have been related to work on explaining the moon illusion. This would explain why he would go to

so muh pains to get an aurate measurement, even ompensating for the size of the eye, as he might be

omparing this measurement with a future one of the sun at its zenith.

Note that Ptolemy later dismissed this explanation and laimed that the moon illusion was due to human
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pereption [31, p. ??℄.

6 Solar parallax

The next part of the paper is devoted to a onsideration of the e�et of solar parallax on the estimation

of the distane of the sun. Sine Arhimedes has previously stated that this quantity is negligible, one

an only wonder why he takes it in to aount later. One possibility is that he wants to make his method

oneptually orret. Another reason might be related to the possibility stated above, that Arhimedes was

trying to explain the moon illusion. In this ase, he would require an aurate measurement (this is onsistent

with his omputation, see below). One an also onjeture that the inlusion of a parallax omputation while

ignoring the moon illusion in the paper is a subtle joke-namely, that the sun looks largest when it is atually

farthest from the observer.

One sees that in Arhimedes estimation of solar parallax, his �nal estimate is s + r for the quantity

p

s

2

+ r

2

, i.e., the error introdued by solar parallax is bounded by r. Now the upper bound s + r

2

=(2s)

shows that this error is atually bounded by r

2

=(2s) whih is smaller by a fator of r=(2s). Sine Arhimedes

assumes that s is at most 10000r, even taking s as more than 1000r shows that Arhimedes is overestimating

the parallax error by a fator of 1000. This very poor estimate for a negligible orretion an be explained

assuming that Arhimedes intended to make another observation of the sun at its zenith beause in that ase

the value s + r gives the exat stellar parallax orretion and Arhimedes might have wanted to introdue

the same orretion term for both observations. This gives further evidene that Arhimedes was onerned

with the moon illusion.

7 Large numbers

7.1 The urrent system

Reall that a number in base k is written as a

0

+a

1

k+a

2

k

2

+ � � �+a

n

k

n

, where 0 � a

0

; : : : ; a

1

< k. Modern

notation uses base 10 for writing numbers, but the way English names of numbers are atually spoken is

base 1000 in the following sense: A large number suh as 2

40

= 1; 099; 511; 627; 776 is said to be \one trillion

ninety nine billion �ve hundred and eleven million six hundred and twenty seven thousand seven hundred and

seventy six." The sequene \million, billion, trillion,. . . " represents the number 1000

n+1

as \latin(n){illion"

where latin(n) is the Latin name for n.

The origin of this system dates bak to Italy where millione (= great thousand) was used to denote a

thousand thousand. Around 1484 N. Chuquet used billion, trillion,. . . ,nonillion whih appeared in print

in a 1520 book of Emile de la Rohe. These numbers denoted powers of a million, i.e., a billion was a

million million, a trillion was a million billion, et. However, around the middle of the 17th entury billion

= thousand million, trillion = thousand billion,. . . , started to be used in Frane. This is the system now

used in the United States, but the original system is still used in Great Britain and Germany.

Ditionaries only list numbers up to a vigintillion, and sine this orresponds to Latin for twenty, in

Amerian notation it is 1000

21

= 10

63

.

23



7.2 Naming large numbers

Here is, essentially, Arhimedes' method for naming large numbers. Start with a named number N , then

onsider powers N

2

; N

3

; : : : and introdue an auxilliary terms suh as order or period. One then alls N the

unit of the �rst order, N

2

the unit of the seond order, and so on. This allows one to name numbers, e.g., if

N = 10000, then 1093N

2

+ 3511N + 1 would be \one thousand and ninety three units of the seond order

and three thousand �ve hundred and eleven units of the �rst order and 1."

One runs out of name of orders at the Nth order, whih is N

N

. It follows that introdution of a new

symbol suh as order or period allows one to name numbers up to N

N

. Note, however, that naming orders

uses ordinals, i.e., �rst, seond, third,. . . , so going up to N

N

requires one to have names for the ordinals up

to N as well.

Upon reetion it is seen that the English language system uses this system, where the new symbol is

the suÆx \illion," i.e., latin(n){illion means a number of the nth order. However, it does not seem that the

latin pre�x orresponds to an ordinal.

In [22℄ D.E. Knuth gives a more eÆient nomenlature for large numbers along the following lines. Given

names for all numbers up to N , one an name all numbers up to N

2

by using aN + b, where a; b � N . For

example, one says \nineteen hundred and ninety seven" for 1997 (N = 100). It follows that a name for a

hundred hundred makes sense, so that the next name in the system is the myriad. This allows one to ount

up to a myriad myriad, and the new name for this is a myllion. Similarly, a byllion is a myllion myllion and

in general latin(n){yllion is latin(n� 1){yllion

2

, i.e., 10

2

n+2

.

This system is more eÆient at naming large numbers than one where a new name is given for eah

power of some number, however it has the disadvantage that one annot easily reognize the exponent of

the base from the name of the number. The point is that large numbers are rarely named exatly and are

most often used for rough estimates, so that the power of ten is the most important information ontained

in the number.

7.3 The Greek system

In Arhimedes' time, the system used by Greeks was hardly adequate to express any number larger that a

hundred million. The Greeks had an alphabeti method of writing numbers aording to the sheme

� = 1; � = 2;  = 3; Æ = 4; � = 5; a = 6; � = 7; � = 8; � = 9;

� = 10; � = 20; � = 30; � = 40; � = 50; � = 60; o = 70; � = 80; b = 90;

� = 100; � = 200; � = 300; � = 400; � = 500; � = 600;  = 700; ! = 800;  = 900:

The Greeks had to use three speial symbols in in order to get all numbers less than a thousand. These

are represented here as a; b; , due to lak of fonts. The �rst letter is digamma or stigma in minusule, the

seond is koppa, and the third is san or ssade, and later, in minusule, alled sampi.

The thousands were represented as a lower left stroke followed by one of �; : : : ; �, or else by one of the

apital letters A; : : : ;�. Thus, 1234 would be written as A��Æ or

0

���Æ, where the overline is meant to

indiate that this is a number, not a word.
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Numbers over ten thousand would be expressed by writing the number of ten thousands over a �, as ten

thousand was alled a myriad (�����Æ��).

The Greek system did not express numbers larger than a myriad myriad, \ten thousand times ten

thousand," e.g., Daniel 7:10 and Revelation 5:11.

7.4 Arhimedes' system

Arhimedes begins the desription of this system by noting that the Greek language already has names

for numbers up to a myriad. He then observes that this allows one to name numbers up to a myriad

myriad (= 10

8

), as noted above. This is the largest number named in the ontemporary Greek system and

Arhimedes uses it as the base of his system. In order to simplify the exposition, de�ne 
 = 10

8

.

Arhimedes alls the numbers up to M �rst numbers whih Heath [1℄ alls numbers of the �rst order.

Note that Arhimedes' system expresses ranges of numbers, as opposed to naming a single number.

Aording to the above, introdution of the new symbol \numbers" whih an be taken to mean \order

of numbers" should allow Arhimedes to name numbers up to 





, and this is what he proeeds to do. The

last number of the �rst order is 
 whih Arhimedes alls the unit of seond numbers, and the numbers in

the range 
 to 


2

are alled the seond order. In general the nth order will onsist of the range 


n�1

to




n

and Arhimedes ontinues until the 
th order whih is the range 



�1

to 





. This last number is a

myriad myriad to the myriad myriad power, as expeted. As noted above, this requires being able to name

all ordinals up to the 
th, and this is possible, sine these numbers are part of the Greek language.

Suh large numbers are suÆient for any physial appliation, but in order to prove the power of his

system Arhimedes ontinues by introduing a seond symbol, the period. Thus, the range of numbers

de�ned up to the end of the 
th numbers is alled the �rst period, and the last number of the �rst period,

whih I all �, is de�ned to be the unit of the seond period, i.e., � = 





. Aording to the above, this

ould allow Arhimedes to name numbers up to �

�

, assuming that he had names for the ordinals up to �.

However, it will be seen that this is not the ase.

In fat, Arhimedes goes on to name the �rst order of the seond period to be the range � to �
, and

the seond order of the seond period to be �
 to �


2

, and so on. In general, the nth order of the seond

period will be �


n�1

to �


n

. One ontinues until the 
th order of the seond period whih is the range

�



�1

to �





= �

2

. This number is then taken to be the unit of numbers of the third period, and in the

same way, the numbers �

2

to �

3

will be alled the numbers of the 3rd period. In general, the numbers of

the nth period will be the range �

n�1

to �

n

.
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The Arhimedean system an be desribed by
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2
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2
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3

;
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; seond period
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2nd numbers
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2

;

3rd numbers
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�


2

; : : : ;�


3

;
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.

.

.

.

nth numbers

z }| {

�


n�1

; : : : ;�


n

;

.

.

.

.

.
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th numbers

z }| {

�



�1

; : : : ;�





= �

2

; : : : ;

and so forth until


th period
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z }| {

�


�1




n�1

; : : : ;�


�1




n

;

.

.

.

.

.

.


th numbers

z }| {
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�1

; : : : ;�
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:

:

Arhimedes ontinues till the 
th period whih gives numbers in the range �


�1

to �




. This last number

is �

10

8

= 10

8�10

16

is the largest one named by Arhimedes and was written by him as: �� ������������o����

����oÆo� ��������������!� �����!� ������ �����Æ��.

This is translated by Heath as: \a myriad myriad units of myriad myriad numbers of the myriad myriad

period." However, a more aurate translation would be: \A myriad myriad units of myriad{times myriadth
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numbers of the myriad{times myriadth period." Here, the term \myriad{times" represents the adverb for

\myriad" as in \one, twie,. . . , myriad{times."

One sees that Arhimedes stops at this number beause he has failed to inlude names for the ordinals

orresponding to his new numbers. The most evident reason is that Arhimedes uses ranges of numbers

whih makes the naming of the orresponding ordinals diÆult: What is the ordinal orresponding to the

\unit of the seond order"?

Moreover, modern English has aepted the onversion of any term denoting number into an ordinal by

appending \th", as in n =) nth, but this is not neessarily the ase with the anient Greek language, where

suh a system must be more rigorous. For example, in English, Arhimedes' largest number is: the unit

of the seond orderth period. Similarly, by \abuse of notation" one alls the nth orderth period the range

�




n�1

to �




n

. It would then follow that the 
th orderth period of numbers would be the range �





�1

to

�







= �

�

, as laimed. This last number ould also be alled the seond periodth period of numbers. It

would be

(10

8�10

8

)

10

8�10

8

= 10

8�10

8(10

8

+1)

:

For his appliations, Arhimedes wants to apply the law of exponents to orders of numbers, so only needs

a system to denote large power of 10 (D.H. Fowler [14, p. 225℄ remarks there is no evidene that Arhimedes

intended this system for anything other than this). As evidene, note that the term \myriad myriad myriad"

appears, though it should have been alled a \myriad seond numbers" aording to this sheme.

It is seen that his system is suboptimal beause in naming ranges of numbers he e�etively starts by

naming the the unit as being the �rst in the list of powers, so that the unit of nth numbers is atually a

M

n+1

, instead of M

n

. It follows that, aording to this sheme, a unit of mth numbers times a unit of nth

numbers will be the unit of m+ n� 1 numbers.

Here one sees how Arhimedes' de�nition an be improved. Instead of looking at ranges of numbers,

onsider how one might say a large number in terms of myriads, and de�ne the order of a number as the

largest number of times you repeat the word \myriad" onseutively. Thus, a myriad is the unit of the

�rst order, as are number suh as one hundred and twenty three myriads. Similarly, a myriad{myriad is

the unit of the seond order, a myriad-myriad-myriad is the unit of the third order, and so on. It is quite

lear that suh a nomenlature satis�es the law of exponents, as multipliation of units of orders is simply

onatenation of the repeated \myriads" of eah fator.

One an try to explain why this simpler system was not used by Arhimedes. It might be due to

the syntatial peuliarities of Anient Greek in whih the numbers \myriad-myriad" and \myriad-myriad-

myriad" were written ������ �����Æ�� and �������� ������� �����Æ�����, respetively. This an be

transliterated to \a myriad{times a myriad times a myriad." One sees that the Greek syntax does not make

the repetition of the word \myriad" as lear as in present English usage.

As noted above, exept for one ase, Arhimedes uses the law of exponents only in the form 10

a

10

6

=

10

a+6

. Clearly, Arhimedes is piking the largest ube of a power of 10 smaller than 10

8

, so that eah

multipliation will only inrease numbers by a single order at most. Whether this is done beause it makes

the argument learer, or beause Arhimedes is unomfortable with his notation is a matter of debate.
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As disussed above, to improve Arhimedes' system, one should

1. Name ardinals instead of ranges of numbers.

2. Find a natural way to name large ordinals.

3. Make the law of exponents learer.

One �nds a basis for suh a system in nomenlature of Diophantus [12, p. 47℄ who used the notation

\�rst myriad" for 10; 000 and \seond myriad" for 10; 000

2

.

This system has all the above properties in that it names ardinals, eah term in the sequene has a

orresponding ordinal name, and the law of exponents is seen by the fat that the mth{myriad times the

nth{myriad is the (m+ n)th{myriad.

This proess ends at the the myriadth myriad (����o��� �����) whih an be alled a \big myriad"

(��� �����). If one lets A = 10000, then a big myriad is A

A

whih will be denoted as B. Similarly, a

\bigger myriad" (����!� �����) would be the big myriadth big myriad (��� ����o��� ��� �����) whih

would be B

B

, denoted by �. A \biggest myriad" would be the \bigger myriadth bigger myriad" (����!�

����o���) denoted by � and equal to �

�

. Finally, one would have the \biggest myriadth biggest myriad"

whih would be �

�

. This last number is larger than 10

10

10

10

10

whih is muh larger than Arhimedes'

numbers, yet expressible in similar notation.

As with Arhimedes, one an go further by letting A be the �rst period, B the seond period, et., so

that the biggest myriadth period would be a number larger that 10

10

.

.

.

10

where there are 10

10

10

10

terms in

the exponential.
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