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Introduction

If there ever was a case of appropriateness in discovery, the finding of this
manuscript in the summer of 1906 was one. In the first place it was ap-
propriate that the discovery should be made in Constantinople, since it was
here that the West received its first manuscripts of the other extant works,
nine in number, of the great Syracusan. It was furthermore appropriate that
the discovery should be made by Professor Heiberg, facilis princeps among
all workers in the field of editing the classics of Greek mathematics, and an
indefatigable searcher of the libraries of Europe for manuscripts to aid him
in perfecting his labors. And finally it was most appropriate that this work
should appear at a time when the affiliation of pure and applied mathematics
is becoming so generally recognized all over the world. We are sometimes
led to feel, in considering isolated cases, that the great contributors of the
past have worked in the field of pure mathematics alone, and the saying of
Plutarch that Archimedes felt that “every kind of art connected with daily
needs was ignoble and vulgar”1 may have strengthened this feeling. It there-
fore assists us in properly orientating ourselves to read another treatise from
the greatest mathematician of antiquity that sets clearly before us his in-
debtedness to the mechanical applications of his subject.

Not the least interesting of the passages in the manuscript is the first line,
the greeting to Eratosthenes. It is well known, on the testimony of Diodoros
his countryman, that Archimedes studied in Alexandria, and the latter fre-
quently makes mention of Konon of Samos whom he knew there, probably as
a teacher, and to whom he was indebted for the suggestion of the spiral that
bears his name. It is also related, this time by Proclos, that Eratosthenes
was a contemporary of Archimedes, and if the testimony of so late a writer as
Tzetzes, who lived in the twelfth century, may be taken as valid, the former
was eleven years the junior of the great Sicilian. Until now, however, we
have had nothing definite to show that the two were ever acquainted. The
great Alexandrian savant,—poet, geographer, arithmetician,—affectionately
called by the students Pentathlos, the champion in five sports,2 selected by
Ptolemy Euergetes to succeed his master, Kallimachos the poet, as head of
the great Library,—this man, the most renowned of his time in Alexandria,
could hardly have been a teacher of Archimedes, nor yet the fellow student of

1Marcellus, 17.
2His nickname of Beta is well known, possibly because his lecture room was number 2.
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one who was so much his senior. It is more probable that they were friends
in the later days when Archimedes was received as a savant rather than as a
learner, and this is borne out by the statement at the close of proposition I
which refers to one of his earlier works, showing that this particular treatise
was a late one. This reference being to one of the two works dedicated to
Dositheos of Kolonos,3 and one of these (De lineis spiralibus) referring to an
earlier treatise sent to Konon,4 we are led to believe that this was one of the
latest works of Archimedes and that Eratosthenes was a friend of his mature
years, although one of long standing. The statement that the preliminary
propositions were sent “some time ago” bears out this idea of a considerable
duration of friendship, and the idea that more or less correspondence had
resulted from this communication may be inferred by the statement that he
saw, as he had previously said, that Eratosthenes was “a capable scholar
and a prominent teacher of philosophy,” and also that he understood “how
to value a mathematical method of investigation when the opportunity of-
fered.” We have, then, new light upon the relations between these two men,
the leaders among the learned of their day.

A second feature of much interest in the treatise is the intimate view that
we have into the workings of the mind of the author. It must always be
remembered that Archimedes was primarily a discoverer, and not primarily
a compiler as were Euclid, Apollonios, and Nicomachos. Therefore to have
him follow up his first communication of theorems to Eratosthenes by a
statement of his mental processes in reaching his conclusions is not merely
a contribution to mathematics but one to education as well. Particularly
is this true in the following statement, which may well be kept in mind in
the present day: “l have thought it well to analyse and lay down for you
in this same book a peculiar method by means of which it will be possible
for you to derive instruction as to how certain mathematical questions may
be investigated by means of mechanics. And I am convinced that this is
equally profitable in demonstrating a proposition itself; for much that was
made evident to me through the medium of mechanics was later proved by
means of geometry, because the treatment by the former method had not
yet been established by way of a demonstration. For of course it is easier to
establish a proof if one has in this way previously obtained a conception of

3We know little of his works, none of which are extant. Geminos and Ptolemy refer to
certain observations made by him in 200 B. C., twelve years after the death of Archimedes.
Pliny also mentions him.

4 Tw̃n pot̀i Kónwna ápustaléntwn jewrhmátwn.
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the questions, than for him to seek it without such a preliminary notion. .
. . Indeed I assume that some one among the investigators of to-day or in
the future will discover by the method here set forth still other propositions
which have not yet occurred to us.” Perhaps in all the history of mathematics
no such prophetic truth was ever put into words. It would almost seem as if
Archimedes must have seen as in a vision the methods of Galileo, Cavalieri,
Pascal, Newton, and many of the other great makers of the mathematics of
the Renaissance and the present time.

The first proposition concerns the quadrature of the parabola, a subject
treated at length in one of his earlier communications to Dositheos.5 He
gives a digest of the treatment, but with the warning that the proof is not
complete, as it is in his special work upon the subject. He has, in fact, sum-
marized propositions VII-XVII of his communication to Dositheos, omitting
the geometric treatment of propositions XVIII-XXIV. One thing that he does
not state, here or in any of his works, is where the idea of center of gravity6

started. It was certainly a common notion in his day, for he often uses it
without defining it. It appears in Euclid’s7 time, but how much earlier we
cannot as yet say.

Proposition II states no new fact. Essentially it means that if a sphere,
cylinder, and cone (always circular) have the same radius, r, and the altitude
of the cone is r and that of the cylinder 2r, then the volumes will be as
4 : 1 : 6, which is true, since they are respectively 4

3
πr3, 1

3
πr3, and 2πr3. The

interesting thing, however, is the method pursued, the derivation of geometric
truths from principles of mechanics. There is, too, in every sentence, a little
suggestion of Cavalieri, an anticipation by nearly two thousand years of the
work of the greatest immediate precursor of Newton. And the geometric
imagination that Archimedes shows in the last sentence is also noteworthy
as one of the interesting features of this work: “After I had thus perceived
that a sphere is four times as large as the cone. . . it occurred to me
that the surface of a sphere is four times as great as its largest circle, in
which I proceeded from the idea that just as a circle is equal to a triangle
whose base is the periphery of the circle, and whose altitude is equal to its
radius, so a sphere is equal to a cone whose base is the same as the surface
of the sphere and whose altitude is equal to the radius of the sphere.” As

5 Tetragwnismdc parabolh̃c.
6 Kéntra barw̃n, for “barycentric” is a very old term.
7At any rate in the anonymous fragment De levi et ponderoso, sometimes attributed

to him.
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a bit of generalization this throws a good deal of light on the workings of
Archimedes’s mind.

In proposition III he considers the volume of a spheroid, which he had al-
ready treated more fully in one of his letters to Dositheos,8 and which contains
nothing new from a mathematical standpoint. Indeed it is the method rather
than the conclusion that is interesting in such of the subsequent propositions
as relate to mensuration. Proposition V deals with the center of gravity
of a segment of a conoid, and proposition VI with the center of gravity of a
hemisphere, thus carrying into solid geometry the work of Archimedes on the
equilibrium of planes and on their centers of gravity.9 The general method is
that already known in the treatise mentioned, and this is followed through
proposition X.

Proposition XI is the interesting case of a segment of a right cylinder cut
off by a plane through the center of the lower base and tangent to the upper
one. He shows this to equal one-sixth of the square prism that circumscribes
the cylinder. This is well known to us through the formula v = 2r2h/3, the
volume of the prism being 4r2h, and requires a knowledge of the center of
gravity of the cylindric section in question. Archimedes is, so far as we know,
the first to state this result, and he obtains it by his usual method of the
skilful balancing of sections. There are several lacunae in the demonstration,
but enough of it remains to show the ingenuity of the general plan. The
culminating interest from the mathematical standpoint lies in proposition
XIII, where Archimedes reduces the whole question to that of the quadrature
of the parabola. He shows that a fourth of the circumscribed prism is to the
segment of the cylinder as the semi-base of the prism is to the parabola
inscribed in the semi-base; that is, that 1

4
p : v = 1

2
b : (2

3
· 1

2
b), whence v = 1

6
p.

Proposition XIV is incomplete, but it is the conclusion of the two preceding
propositions.

In general, therefore, the greatest value of the work lies in the following:
1. It throws light upon the hitherto only suspected relations of Archi-

medes and Eratosthenes.
2. It shows the working of the mind of Archimedes in the discovery of

mathematical truths, showing that he often obtained his results by intuition
or even by measurement, rather than by an analytic form of reasoning, veri-
fying these results later by strict analysis.

8 Per̀i kwnoeidew̃n kai sfairoeidew̃n.
9 'Epipédwn ìsorropiw̃n ĥ kéntra barw̃n épipédwn.
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3. It expresses definitely the fact that Archimedes was the discoverer of
those properties relating to the sphere and cylinder that have been attributed
to him and that are given in his other works without a definite statement of
their authorship.

4. It shows that Archimedes was the first to state the volume of the
cylinder segment mentioned, and it gives an interesting description of the
mechanical method by which he arrived at his result.

David Eugene Smith.
Teachers College, Columbia University.
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Geometrical Solutions Derived from Mechan-

ics.

Archimedes to Eratosthenes, Greeting:
Some time ago I sent you some theorems I had discovered, writing down

only the propositions because I wished you to find their demonstrations which
had not been given. The propositions of the theorems which I sent you were
the following:

1. If in a perpendicular prism with a parallelogram10 for base a cylinder is
inscribed which has its bases in the opposite parallelograms10 and its surface
touching the other planes of the prism, and if a plane is passed through the
center of the circle that is the base of the cylinder and one side of the square
lying in the opposite plane, then that plane will cut off from the cylinder a
section which is bounded by two planes, the intersecting plane and the one
in which the base of the cylinder lies, and also by as much of the surface of
the cylinder as lies between these same planes; and the detached section of
the cylinder is 1

6
of the whole prism.

2. If in a cube a cylinder is inscribed whose bases lie in opposite paral-
lelograms10 and whose surface touches the other four planes, and if in the
same cube a second cylinder is inscribed whose bases lie in two other paral-
lelograms10 and whose surface touches the four other planes, then the body
enclosed by the surface of the cylinder and comprehended within both cylin-
ders will be equal to 2

3
of the whole cube.

These propositions differ essentially from those formerly discovered; for
then we compared those bodies (conoids, spheroids and their segments) with
the volume of cones and cylinders but none of them was found to be equal to
a body enclosed by planes. Each of these bodies, on the other hand, which
are enclosed by two planes and cylindrical surfaces is found to be equal to
a body enclosed by planes. The demonstration of these propositions I am
accordingly sending to you in this book.

Since I see, however, as I have previously said, that you are a capable
scholar and a prominent teacher of philosophy, and also that you understand
how to value a mathematical method of investigation when the opportunity
is offered, I have thought it well to analyze and lay down for you in this same
book a peculiar method by means of which it will be possible for you to derive
instruction as to how certain mathematical questions may be investigated by

10This must mean a square.
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means of mechanics. And I am convinced that this is equally profitable in
demonstrating a proposition itself; for much that was made evident to me
through the medium of mechanics was later proved by means of geometry
because the treatment by the former method had not yet been established
by way of a demonstration. For of course it is easier to establish a proof
if one has in this way previously obtained a conception of the questions,
than for him to seek it without such a preliminary notion. Thus in the
familiar propositions the demonstrations of which Eudoxos was the first to
discover, namely that a cone and a pyramid are one third the size of that
cylinder and prism respectively that have the same base and altitude, no
little credit is due to Democritos who was the first to make that statement
about these bodies without any demonstration. But we are in a position to
have found the present proposition in the same way as the earlier one; and
I have decided to write down and make known the method partly because
we have already talked about it heretofore and so no one would think that
we were spreading abroad idle talk, and partly in the conviction that by this
means we are obtaining no slight advantage for mathematics, for indeed I
assume that some one among the investigators of to-day or in the future will
discover by the method here set forth still other propositions which have not
yet occurred to us.

In the first place we will now explain what was also first made clear
to us through mechanics, namely that a segment of a parabola is 4

3
of the

triangle possessing the same base and equal altitude; following which we
will explain in order the particular propositions discovered by the above
mentioned method; and in the last part of the book we will present the
geometrical demonstrations of the propositions.11

1. If one magnitude is taken away from another magnitude and the same
point is the center of gravity both of the whole and of the part removed, then
the same point is the center of gravity of the remaining portion.

2. If one magnitude is taken away from another magnitude and the center
of gravity of the whole and of the part removed is not the same point, the
center of gravity of the remaining portion may be found by prolonging the
straight line which connects the centers of gravity of the whole and of the
part removed, and setting off upon it another straight line which bears the

11In his “Commentar,” Professor Zeuthen calls attention to the fact that it was aiready
known from Heron’s recently discovered Metrica that these propositions were contained
in this treatise, and Professor Heiberg made the same comment in Hermes.—Tr.
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same ratio to the straight line between the aforesaid centers of gravity, as
the weight of the magnitude which has been taken away bears to the weight
of the one remaining [De plan. aequil. I, 8].

3. If the centers of gravity of any number of magnitudes lie upon the same
straight line, then will the center of gravity of all the magnitudes combined
lie also upon the same straight line [Cf. ibid. I, 5].

4. The center of gravity of a straight line is the center of that line [Cf.
ibid. I, 4].

5. The center of gravity of a triangle is the point in which the straight
lines drawn from the angles of a triangle to the centers of the opposite sides
intersect [Ibid. I, 14].

6. The center of gravity of a parallelogram is the point where its diagonals
meet [Ibid. I, 10].

7. The center of gravity [of a circle] is the center [of that circle].
8. The center of gravity of a cylinder [is the center of its axis].
9. The center of gravity of a prism is the center of its axis.
10. The center of gravity of a cone so divides its axis that the section at

the vertex is three times as great as the remainder.
11. Moreover together with the exercise here laid down I will make use

of the following proposition:
If any number of magnitudes stand in the same ratio to the same number

of other magnitudes which correspond pair by pair, and if either all or some
of the former magnitudes stand in any ratio whatever to other magnitudes,
and the latter in the same ratio to the corresponding ones, then the sum of
the magnitudes of the first series will bear the same ratio to the sum of those
taken from the third series as the sum of those of the second series bears to
the sum of those taken from the fourth series [De Conoid. I].

Proposition I

Let αβγ [Fig. 1] be the segment of a parabola bounded by the straight line
αγ and the parabola αβγ. Let αγ be bisected at δ, δβε being parallel to the
diameter, and draw αβ, and βγ. Then the segrnent αβγ will be 4

3
as great

as the triangle αβγ.
From the points α and γ draw αζ‖δβε, and the tangent γζ; produce [γβ

to κ, and make κθ = γκ]. Think of γθ as a scale-beam with the center at κ
and let µξ be any straight line whatever ‖εδ. Now since γβα is a parabola,
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γζ a tangent and γδ an ordinate, then εβ = βδ; for this indeed has been
proved in the Elements [i.e., of conic sections, cf. Quadr. parab. 2]. For
this reason and because ζα and µξ‖εδ, µν = νξ, and ζκ = κα. And because
γα : αξ = µξ : ξo (for this is shown in a corollary, [cf. Quadr. parab. 5]),
γα : αξ = γκ : κν; and γκ = κθ, therefore θκ : κν = µξ : ξo. And because ν
is the center of gravity of the straight line µξ, since µν = νξ, then if we make
τη = ξo and θ as its center of gravity so that τθ = θη, the straight line τθη
will be in equilibrium with µξ in its present position because θν is divided
in inverse proportion to the weights τη and µξ, and θκ : κν = µξ : ητ ;
therefore κ is the center of gravity of the combined weight of the two. In the

Fig. 1.

same way all straight lines drawn
in the triangle ζαγ‖εδ are in their
present positions in equilibrium with
their parts cut off by the parabola,
when these are transferred to θ, so
that κ is the center of gravity of the
combined weight of the two. And be-
cause the triangle γζα consists of the
straight lines in the triangle γζα and
the segment αβγ consists of those
straight lines within the segment of
the parabola corresponding to the
straight line ξo, therefore the trian-
gle ζαγ in its present position will be
in equilibrium at the point κ with
the parabola-segment when this is
transferred to θ as its center of grav-
ity, so that κ is the center of gravity of the combined weights of the two.
Now let γκ be so divided at χ that γκ = 3κχ; then χ will be the center of
gravity of the triangle αζγ, for this has been shown in the Statics [cf. De
plan. aequil. I, 15, p. 186, 3 with Eutokios, S. 320, 5ff.]. Now the triangle
ζαγ in its present position is in equilibrium at the point κ with the segment
βαγ when this is transferred to θ as its center of gravity, and the center
of gravity of the triangle ζαγ is χ; hence triangle αζγ : segm. αβγ when
transferred to θ as its center of gravity = θκ : κχ. But θκ = 3κχ; hence also
triangle αζγ = 3 segm. αβγ. But it is also true that triangle ζαγ = 4∆αβγ
because ζκ = κα and αδ = δγ; hence segm. αβγ = 4

3
the triangle αβγ. This

is of course clear.
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It is true that this is not proved by what we have said here; but it indicates
that the result is correct. And so, as we have just seen that it has not been
proved but rather conjectured that the result is correct we have devised a
geometrical demonstration which we made known some time ago and will
again bring forward farther on.

Proposition II

That a sphere is four times as large as a cone whose base is equal to the
largest circle of the sphere and whose altitude is equal to the radius of the
sphere, and that a cylinder whose base is equal to the largest circle of the
sphere and whose altitude is equal to the diameter of the circle is one and a
half times as large as the sphere, may be seen by the present method in the
following way:

Fig. 2.

Let αβγδ [Fig. 2] be the largest
circle of a sphere and αγ and βδ
its diameters perpendicular to each
other; let there be in the sphere a cir-
cle on the diameter βδ perpendicular
to the circle αβγδ, and on this per-
pendicular circle let there be a cone
erected with its vertex at α; produc-
ing the convex surface of the cone,
let it be cut through γ by a plane
parallel to its base; the result will be
the circle perpendicular to αγ whose
diameter will be εζ. On this circle
erect a cylinder whose axis = αγ and
whose vertical boundaries are ελ and
ζη. Produce γα making αθ = γα
and think of γθ as a scale-beam with
its center at α. Then let µν be any
straight line whatever drawn ‖βδ intersecting the circle αβγδ in ξ and o,
the diameter αγ in σ, the straight line αε in π and αζ in ρ, and on the
straight line µν construct a plane perpendicular to αγ; it will intersect the
cylinder in a circle on the diameter µν; the sphere αβγδ, in a circle on
the diameter ξo; the cone αεζ in a circle on the diameter πρ. Now because
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γα×ασ = µσ×σπ ( for αγ = σµ, ασ = πσ), and γα×ασ = αξ2 = ξσ2+απ2

then µσ × σπ = ξσ2 + σπ2. Moreover, because γα : ασ = µσ : σπ and
γα = αθ, therefore θα : ασ = µσ : σπ = µσ2 : µσ × σπ. But it has been
proved that ξσ2 +σπ2 = µσ×σπ; hence αθ : ασ = µσ2 : ξσ2 +σπ2. But it is
true that µσ2 : ξσ2 +σπ2 = µν2 : ξα2 +πρ2 = the circle in the cylinder whose
diameter is µν : the circle in the cone whose diameter is πρ + the circle in
the sphere whose diameter is ξo; hence θα : ασ = the circle in the cylinder :
the circle in the sphere + the circle in the cone. Therefore the circle in the
cylinder in its present position will be in equilibrium at the point α with the
two circles whose diameters are ξo and πρ, if they are so transferred to θ
that θ is the center of gravity of both. In the same way it can be shown that
when another straight line is drawn in the parallelogram ξλ‖εζ, and upon it
a plane is erected perpendicular to αγ, the circle produced in the cylinder in
its present position will be in equilibrium at the point α with the two circles
produced in the sphere and the cone when they are transferred and so ar-
ranged on the scale-beam at the point θ that θ is the center of gravity of both.
Therefore if cylinder, sphere and cone are filled up with such circles then the
cylinder in its present position will be in equilibrium at the point α with the
sphere and the cone together, if they are transferred and so arranged on the
scale-beam at the point θ that θ is the center of gravity of both. Now since
the bodies we have mentioned are in equilibrium, the cylinder with κ as its
center of gravity, the sphere and the cone transferred as we have said so that
they have θ as center of gravity, then θα : ακ = cylinder : sphere + cone.
But θα = 2ακ, and hence also the cylinder = 2× (sphere + cone). But it is
also true that the cylinder = 3 cones [Euclid, Elem. XII, 10], hence 3 cones
= 2 cones + 2 spheres. If 2 cones be subtracted from both sides, then the
cone whose axes form the triangle αεζ = 2 spheres. But the cone whose axes
form the triangle αεζ = 8 cones whose axes form the triangle αβδ because
εζ = 2βδ, hence the aforesaid 8 cones = 2 spheres. Consequently the sphere
whose greatest circle is αβγδ is four times as large as the cone with its vertex
at α, and whose base is the circle on the diatneter βδ perpendicular to αγ.

Draw the straight lines φβχ and ψδω‖αγ through β and δ in the parallel-
ogram λζ and imagine a cylinder whose bases are the circles on the diameters
φψ and χω and whose axis is αγ. Now since the cylinder whose axes form
the parallelogram φω is twice as large as the cylinder whose axes form the
parallelogram φδ and the latter is three times as large as the cone the tri-
angle of whose axes is αβδ, as is shown in the Elements [Euclid, Elem. XII,
10], the cylinder whose axes form the parallelogram φω is six times as large

12



as the cone whose axes form the triangle αβδ. But it was shown that the
sphere whose largest circle is αβγδ is four times as large as the same cone,
consequently the cylinder is one and one half times as large as the sphere,
Q. E. D.

After I had thus perceived that a sphere is four times as large as the cone
whose base is the largest circle of the sphere and whose altitude is equal to
its radius, it occurred to me that the surface of a sphere is four times as great
as its largest circle, in which I proceeded from the idea that just as a circle
is equal to a triangle whose base is the periphery of the circle and whose
altitude is equal to its radius, so a sphere is equal to a cone whose base is the
same as the surface of the sphere and whose altitude is equal to the radius
of the sphere.

Proposition III

By this method it may also be seen that a cylinder whose base is equal to
the largest circle of a spheroid and whose altitude is equal to the axis of the
spheroid, is one and one half times as large as the spheroid, and when this is
recognized it becomes clear that if a spheroid is cut through its center by a
plane perpendicular to its axis, one-half of the spheroid is twice as great as
the cone whose base is that of the segment and its axis the same.

For let a spheroid be cut by a plane through its axis and let there be
in its surface an ellipse αβγδ [Fig. 3] whose diameters are αγ and βδ and
whose center is κ and let there be a circle in the spheroid on the diameter
βδ perpendicular to αγ; then imagine a cone whose base is the same circle
but whose vertex is at α, and producing its surface, let the cone be cut
by a plane through γ parallel to the base; the intersection will be a circle
perpendicular to αγ with εζ as its diameter. Now imagine a cylinder whose
base is the same circle with the diameter εζ and whose axis is αγ; let γα be
produced so that αθ = γα; think of θγ as a scale-beam with its center at α
and in the parallelogram λθ draw a straight line µν‖εζ, and on µν construct
a plane perpendicular to αγ; this will intersect the cylinder in a circle whose
diameter is µν, the spheroid in a circle whose diameter is ξo and the cone in
a circle whose diameter is πρ. Because γα : ασ = εα : απ = µσ : σπ, and
γα = αθ, therefore θα : ασ = µσ : σπ. But µσ : σπ = µσ2 : µσ × σπ and
µσ × σπ = πσ2 + σξ2, for ασ × σγ : σξ2 = ακ × κγ : κβ2 = ακ2 : κβ2 (for
both ratios are equal to the ratio between the diameter and the parameter

13



[Apollonius, Con. I, 21]) = ασ2 : σπ2 therefore ασ2 : ασ × σγ = πσ2 :
σξ2 = σπ2 : σπ × πµ, consequently µπ × πσ = σξ2. If πσ2 is added to both
sides then µσ × σπ = πσ2 + σξ2. Therefore θα : ασ = µσ2 : πσ2 + σξ2.
But µσ2 : σξ2 + σπ2 = the circle in the cylinder whose diameter is µν :
the circle with the diameter ξo + the circle with the diameter πρ; hence the
circle whose diameter is µν will in its present position be in equilibrium at
the point α with the two circles whose diameters are ξo and πρ when they
are transferred and so arranged on the scale-beam at the point α that θ is
the center of gravity of both; and θ is the center of gravity of the two circles
combined whose diameters are ξo and πρ when their position is changed,

Fig. 3.

hence θα : ασ = the circle with
the diameter µν : the two circles
whose diameters are ξo and πρ. In
the same way it can be shown that
if another straight line is drawn in
the parallelogram λζ‖εζ and on this
line last drawn a plane is constructed
perpendicular to αγ, then likewise
the circle produced in the cylin-
der will in its present position be
in equilibrium at the point α with
the two circles combined which have
been produced in the spheroid and
in the cone respectively when they
are so transferred to the point θ on
the scale-beam that θ is the cen-
ter of gravity of both. Then if
cylinder, spheroid and cone are filled
with such circles, the cylinder in its
present position will be in equilib-
rium at the point α with the spheroid + the cone if they are transferred and
so arranged on the scale-beam at the point α that θ is the center of gravity
of both. Now κ is the center of gravity of the cylinder, but θ, as has been
said, is the center of gravity of the spheroid and cone together. Therefore
θα : ακ = cylinder : spheroid + cone. But αθ = 2ακ, hence also the cylinder
= 2 × (spheroid + cone) = 2 × spheroid + 2 × cone. But the cylinder = 3
× cone, hence 3 × cone = 2 × cone + 2 × spheroid. Subtract 2 × cone from
both sides; then a cone whose axes form the triangle αεζ = 2 × spheroid.
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But the same cone = 8 cones whose axes form the ∆αβδ; hence 8 such cones
= 2 × spheroid, 4 × cone = spheroid; whence it follows that a spheroid is
four times as great as a cone whose vertex is at α, and whose base is the
circle on the diameter βδ perpendicular to λε, and one-half the spheroid is
twice as great as the same cone.

In the parallelogram λζ draw the straight lines φχ and ψω‖αγ through
the points β and δ and imagine a cylinder whose bases are the circles on the
diameters φψ and χω, and whose axis is αγ. Now since the cylinder whose
axes form the parallelogram φω is twice as great as the cylinder whose axes
form the parallelogram φδ because their bases are equal but the axis of the
first is twice as great as the axis of the second, and since the cylinder whose
axes form the parallelogram φδ is three times as great as the cone whose
vertex is at α and whose base is the circle on the diameter βδ perpendicular
to αγ, then the cylinder whose axes form the parallelogram φω is six times
as great as the aforesaid cone. But it has been shown that the spheroid is
four times as great as the same cone, hence the cylinder is one and one half
times as great as the spheroid. Q. E. D.

Proposition IV

That a segment of a right conoid cut by a plane perpendicular to its axis is
one and one half times as great as the cone having the same base and axis
as the segment, can be proved by the same method in the following way:

Let a right conoid be cut through its axis by a plane intersecting the
surface in a parabola αβγ [Fig. 4]; let it be also cut by another plane per-
pendicular to the axis, and let their common line of intersection be βγ. Let
the axis of the segment be δα and let it be produced to θ so that θα = αδ.
Now imagine δθ to be a scale-beam with its center at α; let the base of the
segment be the circle on the diameter βγ perpendicular to αδ; imagine a
cone whose base is the circle on the diameter βγ, and whose vertex is at α.
Imagine also a cylinder whose base is the circle on the diameter βγ and its
axis αδ, and in the parallelogram let a straight line µν be drawn ‖βγ and
on µν construct a plane perpendicular to αδ; it will intersect the cylinder
in a circle whose diameter is µν, and the segment of the right conoid in a
circle whose diameter is ξo. Now since βαγ is a parabola, αδ its diameter
and ξσ and βδ its ordinates, then [Quadr. parab. 3] δα : ασ = βδ2 : ξσ2.
But δα = αθ, therefore θα : ασ = µσ2 : σξ2. But µσ2 : σξ2 = the circle
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in the cylinder whose diameter is µν : the circle in the segment of the right
conoid whose diameter is ξo, hence θα : ασ = the circle with the diameter µν
: the circle with the diameter ξo; therefore the circle in the cylinder whose

Fig. 4.

diameter is µν is in its present po-
sition, in equilibrium at the point α
with the circle whose diameter is ξo
if this be transferred and so arranged
on the scale-beam at θ that θ is its
center of gravity. And the center of
gravity of the circle whose diameter
is µν is at σ, that of the circle whose
diameter is ξo when its position is
changed, is θ, and we have the in-
verse proportion, θα : ασ = the cir-
cle with the diameter µν : the circle
with the diameter ξo. In the same
way it can be shown that if another
straight line be drawn in the paral-
lelogram εγ‖βγ the circle formed in
the cylinder, will in its present po-
sition be in equilibrium at the point
α with that formed in the segment of the right conoid if the latter is so
transferred to θ on the scale-beam that θ is its center of gravity. Therefore
if the cylinder and the segment of the right conoid are filled up then the
cylinder in its present position will be in equilibrium at the point α with the
segment of the right conoid if the latter is transferred and so arranged on the
scale-beam at θ that θ is its center of gravity. And since these magnitudes
are in equilibrium at α, and κ is the center of gravity of the cylinder, if αδ is
bisected at κ and θ is the center of gravity of the segment transferred to that
point, then we have the inverse proportion θα : ακ = cylinder : segment.
But θα = 2ακ and also the cylinder = 2 × segment. But the same cylinder
is 3 times as great as the cone whose base is the circle on the diameter βγ
and whose vertex is at α; therefore it is clear that the segment is one and
one half times as great as the same cone.
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Proposition V

That the center of gravity of a segment of a right conoid which is cut off by
a plane perpendicular to the axis, lies on the straight line which is the axis
of the segment divided in such a way that the portion at the vertex is twice
as great as the remainder, may be perceived by our method in the following
way:

Let a segment of a right conoid cut off by a plane perpendicular to the
axis be cut by another plane through the axis, and let the intersection in its
surface be the parabola αβγ [Fig. 5] and let the common line of intersection
of the plane which cut off the segment and of the intersecting plane be βγ; let
the axis of the segment and the diameter of the parabola αβγ be αδ; produce
δα so that αθ = αδ and imagine δθ to be a scale-beam with its center at α;

Fig. 5.

then inscribe a cone in the seg-
ment with the lateral boundaries βα
and αγ and in the parabola draw a
straight line ξo‖βγ and let it cut the
parabola in ξ and o and the lateral
boundaries of the cone in π and ρ.
Now because ξσ and βδ are drawn
perpendicular to the diameter of the
parabola, δα : ασ = βδ2 : ξσ2

[Quadr. parab. 3]. But δα : ασ =
βδ : πσ = βδ2 : βδ × πσ, therefore
also βδ2 : ξσ2 = βδ2 : βδ × πσ.
Consequently ξσ2 = βδ × πσ and
βδ : ξσ = ξσ : πσ, therefore βδ :
πσ = ξσ2 : σπ2. But βδ : πσ =
δα : ασ = θα : ασ, therefore also
θα : ασ = ξσ2 : σπ2. On ξo con-
struct a plane perpendicular to αδ;
this will intersect the segment of the
right conoid in a circle whose diameter is ξo and the cone in a circle whose
diameter is πρ. Now because θα : ασ = ξσ2 : σπ2 and ξσ2 : σπ2 = the circle
with the diameter ξo : the circle with the diameter πρ, therefore θα : ασ =
the circle whose diameter is ξo : the circle whose diameter is πρ. Therefore
the circle whose diameter is ξo will in its present position be in equilibrium
at the point α with the circle whose diameter is πρ when this is so trans-
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ferred to θ on the scale-beam that θ is its center of gravity. Now since σ is
the center of gravity of the circle whose diameter is ξo in its present posi-
tion, and θ is the center of gravity of the circle whose diameter is πρ if its
position is changed as we have said, and inversely θα : ασ = the circle with
the diameter ξo : the circle with the diameter πρ, then the circles are in
equilibrium at the point α. In the same way it can be shown that if another
straight line is drawn in the parabola ‖βγ and on this line last drawn a plane
is constructed perpendicular to αδ, the circle formed in the segment of the
right conoid will in its present position be in equilibrium at the point α with
the circle formed in the cone, if the latter is transferred and so arranged on
the scale-beam at θ that θ is its center of gravity. Therefore if the segment
and the cone are filled up with circles, all circles in the segment will be in
their present positions in equilibrium at the point α with all circles of the
cone if the latter are transferred and so arranged on the scale-beam at the
point θ that θ is their center of gravity. Therefore also the segment of the
right conoid in its present position will be in equilibrium at the point α with
the cone if it is transferred and so arranged on the scale-beam at θ that θ is
its center of gravity. Now because the center of gravity of both magnitudes
taken together is α, but that of the cone alone when its position is changed is
θ, then the center of gravity of the remaining magnitude lies on αθ extended
towards α if ακ is cut off in such a way that αθ : ακ = segment : cone. But
the segment is one and one half the size of the cone, consequently αθ = 3

2
ακ

and κ, the center of gravity of the right conoid, so divides αδ that the portion
at the vertex of the segment is twice as large as the remainder.

Proposition VI

[The center of gravity of a hemisphere is so divided on its axis] that the
portion near the surface of the hemisphere is in the ratio of 5 : 3 to the
remaining portion.

Let a sphere be cut by a plane through its center intersecting the sur-
face in the circle αβγδ [Fig.6], αγ and βδ being two diameters of the circle
perpendicular to each other. Let a plane be constructed on βδ perpendicu-
lar to αγ. Then imagine a cone whose base is the circle with the diameter
βδ, whose vertex is at α and its lateral boundaries are βα and αδ; let γα
be produced so that αθ = γα, imagine the straight line θγ to be a scale-
beam with its center at α and in the semi-circle βαδ draw a straight line
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ξo‖βδ; let it cut the circumference of the semicircle in ξ and o, the lat-
eral boundaries of the cone in π and ρ, and αγ in ε. On ξo construct a
plane perpendicular to αε; it will intersect the hemisphere in a circle with
the diameter ξo, and the cone in a circle with the diameter πρ. Now be-
cause αγ : αε = ξα2 : αε2 and ξα2 = αε2 + εξ2 and αε = επ, therefore
αγ : αε = ξε2 + επ2 : επ2. But ξε2 + επ2 : επ2 = the circle with the diameter
ξo + the circle with the diameter πρ : the circle with the diameter πρ, and
γα = αθ, hence θα : αε = the circle with the diameter ξo + the circle with

Fig. 6.

the diameter πρ : circle with the diameter πρ.
Therefore the two circles whose diameters are ξo
and πρ in their present position are in equilibrium
at the point α with the circle whose diameter is
πρ if it is transferred and so arranged at θ that
θ is its center of gravity. Now since the center of
gravity of the two circles whose diameters are ξo
and πρ in their present position [is the point ε,
but of the circle whose diameter is πρ when its
position is changed is the point θ, then θα : αε =
the circles whose diameters are] ξo [,πρ : the circle
whose diameter is πρ. In the same way if another
straight line in the] hemisphere βαδ [is drawn ‖βδ
and a plane is constructed] perpendicular to [αγ
the] two [circles produced in the cone and in the
hemisphere are in their position] in equilibrium at
α [with the circle which is produced in the cone]
if it is transferred and arranged on the scale at θ.
[Now if] the hemisphere and the cone [are filled up
with circles then all circles in the] hemisphere and
those [in the cone] will in their present position
be in equilibrium [with all circles] in the cone, if these are transferred and so
arranged on the scale-beam at θ that θ is their center of gravity; [therefore
the hemisphere and cone also] are in their position [in equilibrium at the
point α] with the cone if it is transferred and so arranged [on the scale-beam
at θ] that θ is its center of gravity.
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Proposition VII

By [this method] it may also be perceived that [any segment whatever] of a
sphere bears the same ratio to a cone having the same [base] and axis [that
the radius of the sphere + the axis of the opposite segment : the axis of the
opposite segment] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . and [Fig. 7] on µν
construct a plane perpendicular to αγ; it will intersect the cylinder in a circle
whose diameter is µν, the segment of the sphere in a circle whose diameter

Fig. 7.

is ξo and the cone whose
base is the circle on the di-
ameter εζ and whose vertex
is at α in a circle whose di-
ameter is πρ. In the same
way as before it may be
shown that a circle whose di-
ameter is µν is in its present
position in equilibrium at α
with the two circles [whose
diameters are ξo and πρ if
they are so arranged on the
scale-beam that θ is their
center of gravity. [And the
same can be proved of all
corresponding circles.] Now
since cylinder, cone, and
spherical segment are filled
up with such circles, the
cylinder in its present posi-
tion [will be in equilibrium at
α] with the cone + the spher-
ical segment if they are transferred and attached to the scale-beam at θ.
Divide αη at φ and χ so that αχ = χη and ηφ = 1

3
αφ; then χ will be the

center of gravity of the cylinder because it is the center of the axis αη. Now
because the above mentioned bodies are in equilibrium at α, cylinder : cone
with the diameter of its base εζ + the spherical segment βαδ = θα : αχ.
And because ηα = 3ηφ then [γη×ηφ] = 1

3
αη×ηγ. Therefore also γη×ηφ =

1
3
βη2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Proposition VIIa

In the same way it may be perceived that any segment of an ellipsoid cut
off by a perpendicular plane, bears the same ratio to a cone having the same
base and the same axis, as half of the axis of the ellipsoid + the axis of the
opposite segment bears to the axis of the opposite segment. . . . . . . . . . . . . . . .

Proposition VIII

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
produce αγ [Fig. 8] making αθ = αγ and γξ = the radius of the sphere;
imagine γθ to be a scale-beam with a center at α, and in the plane cutting

Fig. 8.

off the segment inscribe a circle with its cen-
ter at η and its radius = αη; on this circle
construct a cone with its vertex at α and its
lateral boundaries αε and αζ. Then draw a
straight line κλ‖εζ; let it cut the circumfer-
ence of the segment at κ and λ, the lateral
boundaries of the cone αεζ at ρ and o and αγ
at π. Now because αγ : απ = ακ2 : απ2 and
κα2 = απ2 + πκ2 and απ2 = πo2 (since also
αη2 = εη2), then γα : απ = κπ2 + πo2 : oπ2.
But κπ2 + πo2 : πo2 = the circle with the
diameter κλ + the circle with the diame-
ter oρ : the circle with the diameter oρ and
γα = αθ; therefore θα : απ = the circle with
the diameter κλ + the circle with the diam-
eter oρ : the circle with the diameter oρ.
Now since the circle with the diameter κλ +
the circle with the diameter oρ : the circle
with the diameter oρ = αθ : πα, let the cir-
cle with the diameter oρ be transferred and
so arranged on the scale-beam at θ that θ
is its center of gravity; then θα : απ = the
circle with the diameter κλ + the circle with the diameter oρ in their present
positions : the circle with the diameter oρ if it is transferred and so arranged
on the scale-beam at θ that θ is its center of gravity. Therefore the circles
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in the segment βαδ and in the cone αεζ are in equilibrium at α with that
in the cone αεζ. And in the same way all circles in the segment βαδ and
in the cone αεζ in their present positions are in equilibrium at the point α
with all circles in the cone αεζ if they are transferred and so arranged on
the scate-beam at θ that θ is their center of gravity; then also the spherical
segment αβδ and the cone αεζ in their present positions are in equilibrium
at the point α with the cone εαζ if it is transferred and so arranged on the
scale-beam at θ that θ is its center of gravity. Let the cyIinder µν equal the
cone whose base is the circle with the diameter εζ and whose vertex is at α
and let αη be so divided at φ that αη = 4φη; then φ is the center of gravity
of the cone εαζ as has been previously proved. Moreover let the cylinder
µν be so cut by a perpendicularly intersecting plane that the cylinder µ is
in equilibrium with the cone εαζ. Now since the segment αβδ + the cone
εαζ in their present positions are in equilibrium at α with the cone εαζ if it
is transferred and so arranged on the scale-beam at θ that θ is its center of
gravity, and cylinder µν = cone εαζ and the two cylinders µ+ ν are moved
to θ and µν is in equilibrium with both bodies, then will also the cylinder
ν be in equilibrium with the segment of the sphere at the point α. And
since the spherical segment βαδ : the cone whose base is the circle with the
diameter βδ, and whose vertex is at α = ξη : ηγ (for this has previously
been proved [De sph. et cyl. II, 2 Coroll.]) and cone βαδ : cone εαζ = the
circle with the diameter βδ : the circle with the diameter εζ = βη2 : ηε2,
and βη2 = γη × ηα, ηε2 = ηα2, and γη × ηα : ηα2 = γη : ηα, therefore cone
βαδ : cone εαζ = γη : ηα. But we have shown that cone βαδ : segment βαδ
= γη : ηξ, hence di' ĩsou segment βαδ : cone εαζ = ξη : ηα. And because
αχ : χη = ηα + 4ηγ : αη + 2ηγ so inversely ηχ : χα = 2γη + ηα : 4γη + ηα
and by addition ηα : αχ = 6γη+2ηα : ηα+4ηγ. But ηξ = 1

4
(6ηγ+2ηα) and

γφ = 1
4
(4ηγ+ηα); for that is evident. Hence ηα : αχ = ξη : γφ, consequently

also ξη : ηα = γφ : χα. But it was also demonstrated that ξη : ηα = the
segment whose vertex is at α and whose base is the circle with the diameter
βδ : the cone whose vertex is at α and whose base is the circle with the di-
ameter εζ; hence segment βαδ : cone εαζ = γφ : χα. And since the cylinder
µ is in equilibrium with the cone εαζ at α, and θ is the center of gravity
of the cylinder while φ is that of the cone εαζ, then cone εαζ : cylinder µ
= θα : αφ = γα : αφ. But cylinder µν = cone εαζ; hence by subtraction,
cylinder µ : cylinder ν = αφ : γφ. And cylinder µν = cone εαζ; hence cone
εαζ : cylinder ν = γα : γφ = θα : γφ. But it was also demonstrated that
segment βαδ : cone εαζ = γφ : χα; hence di' ĩsou segment βαδ : cylinder
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ν = ζα : αχ. And it was demonstrated that segment βαδ is in equilibrium
at α with the cylinder ν and θ is the center of gravity of the cylinder ν,
consequently the point χ is also the center of gravity of the segment βαδ.

Proposition IX

In a similar way it can also be perceived that the center of gravity of any
segment of an ellipsoid lies on the straight line which is the axis of the segment
so divided that the portion at the vertex of the segment bears the same ratio
to the remaining portion as the axis of the segment + 4 times the axis of the
opposite segment bears to the axis of the segment + twice the axis of the
opposite segment.

Proposition X

It can also be seen by this method that [a segment of a hyperboloid] bears the
same ratio to a cone having the same base and axis as the segment, that the
axis of the segment + 3 times the addition to the axis bears to the axis of the
segment of the hyperboloid + twice its addition [De Conoid. 25]; and that
the center of gravity of the hyperboloid so divides the axis that the part at
the vertex bears the same ratio to the rest that three times the axis + eight
times the addition to the axis bears to the axis of the hyperboloid + 4 times
the addition to the axis, and many other points which I will leave aside since
the method has been made clear by the examples already given and only the
demonstrations of the above given theorems remain to be stated.

Proposition XI

When in a perpendicular prism with square bases a cylinder is inscribed
whose bases lie in opposite squares and whose curved surface touches the
four other parallelograms, and when a plane is passed through the center
of the circle which is the base of the cylinder and one side of the opposite
square, then the body which is cut off by this plane [from the cylinder] will
be 1

6
of the entire prism. This can be perceived through the present method

and when it is so warranted we will pass over to the geometrical proof of it.
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Fig. 9. Fig. 10.

Imagine a perpendicular prism with square bases and a cylinder inscribed
in the prism in the way we have described. Let the prism be cut through
the axis by a plane perpendicular to the plane which cuts off the section
of the cylinder; this will intersect the prism containing the cylinder in the
parallelogram αβ [Fig. 9] and the common intersecting line of the plane
which cuts off the section of the cylinder and the plane lying through the
axis perpendicular to the one cutting off the section of the cylinder will be
βγ; let the axis of the cylinder and the prism be γδ which is bisected at right
angles by εζ and on εζ let a plane be constructed perpendicular to γδ. This
will intersect the prism in a square and the cylinder in a circle.

Now let the intersection of the prism be the square µν [Fig. 10], that of the
cylinder, the circle ξoπρ and let the circle touch the sides of the square at the
points ξ, o, π and ρ; let the common line of intersection of the plane cutting
off the cylinder-section and that passing through εζ perpendicular to the axis
of the cylinder, be κλ; this line is bisected by πθξ. In the semicircle oπρ draw
a straight line στ perpendicular to πχ, on στ construct a plane perpendicular
to ξπ and produce it to both sides of the plane enclosing the circle ξoπρ; this
will intersect the half-cylinder whose base is the semicircle oπρ and whose
altitude is the axis of the prism, in a parallelogram one side of which = στ
and the other = the vertical boundary of the cylinder, and it will intersect
the cylinder-section likewise in a parallelogram of which one side is στ and
the other µν [Fig. 9]; and accordingly µν will be drawn in the parallelogram
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δε‖βω and will cut off ει = πχ. Now because εγ is a parallelogram and
νι‖θγ, and εθ and βγ cut the parallels, therefore εθ : θι = ωγ : γν = βω : υν.
But βω : υν = parallelogram in the half-cylinder : parallelogram in the
cylinder-section, therefore both parallelograms have the same side στ ; and
εθ = θπ, ιθ = χθ; and since πθ = θξ therefore θξ : θχ = parallelogram in half-
cylinder : parallelogram in the cylinder-section. lmagine the parallelogram
in the cylinder-section transferred and so brought to ξ that ξ is its center
of gravity, and further imagine πξ to be a scale-beam with its center at
θ; then the parallelogram in the half-cylinder in its present position is in
equilibrium at the point θ with the parallelogram in the cylinder-section
when it is transferred and so arranged on the scale-beam at ξ that ξ is its
center of gravity. And since χ is the center of gravity in the parallelogram
in the half-cylinder, and ξ that of the parallelogram in the cylinder-section
when its position is changed, and ξθ : θχ = the parallelogram whose center
of gravity is χ : the parallelogram whose center of gravity is ξ, then the
parallelogram whose center of gravity is χ will be in equilibrium at θ with
the parallelogram whose center of gravity is ξ. In this way it can be proved
that if another straight line is drawn in the semicircle oπρ perpendicular to
πθ and on this straight line a plane is constructed perpendicular to πθ and
is produced towards both sides of the plane in which the circle ξoπρ lies,
then the parallelogram formed in the half-cylinder in its present position
will be in equilibrium at the point θ with the parallelogram formed in the
cylinder-section if this is transferred and so arranged on the scale-beam at
ξ that ξ is its center of-gravity; therefore also all parallelograms in the half-
cylinder in their present positions will be in equilibrium at the point θ with
all parallelograms of the cylinder-section if they are transferred and attached
to the scale-beam at the point ξ; consequently also the half-cylinder in its
present position will be in equilibrium at the point θ with the cylinder-section
if it is transferred and so arranged on the scale-beam at ξ that ξ is its center
of gravity.

Proposition XII

Let the parallelogram µν be perpendicular to the axis [of the circle] ξo [πρ]
[Fig. 11]. Draw θµ and θη and erect upon them two planes perpendicular to
the plane in which the semicircle oπρ lies and extend these planes on both
sides. The result is a prism whose base is a triangle similar to θµη and whose
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altitude is equal to the axis of the cylinder, and this prism is 1
4

of the entire
prism which contains the cylinder. In the semicircle oπρ and in the square µν
draw two straight lines κλ and τυ at equal distances from πξ; these will cut

Fig. 11.

the circumference of the semicircle
oπρ at the points κ and τ , the
diameter oρ at σ and ζ and the
straight lines θη and θµ at φ and
χ. Upon κλ and τυ construct two
planes perpendicular to oρ and ex-
tend them towards both sides of the
plane in which lies the circle ξoπρ;
they will intersect the half-cylinder
whose base is the semicircle oπρ and
whose altitude is that of the cylin-
der, in a parallelogram one side of
which = κσ and the other = the
axis of the cylinder; and they will
intersect the prism θηµ likewise in
a parallelogram one side of which is
equal to λχ and the other equal to
the axis, and in the same way the
half-cylinder in a parallelogram one side of which = τζ and the other = the
axis of the cylinder, and the prism in a parallelogram one side of which = νφ
and the other = the axis of the cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proposition XIII

Let the square αβγδ [Fig. 12] be the base of a perpendicular prism with
square bases and let a cylinder be inscribed in the prism whose base is the
circle εζηθ which touches the sides of the parallelogram αβγδ at ε, ζ, η,
and θ. Pass a plane through its center and the side in the square opposite
the square αβγδ corresponding to the side γδ; this will cut off from the
whole prism a second prism which is 1

4
the size of the whole prism and which

will be bounded by three parallelograms and two opposite triangles. In the
semicircle εζη describe a parabola whose origin is ηε and whose axis is ζκ,
and in the parallelogram δη draw µν‖κζ; this will cut the circumference
of the semicircle at ξ, the parabola at λ, and µν × νλ = νζ2 (for this is
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evident [Apollonios, Con. I, 11]). Therefore µν : νλ = κη2 : λσ2. Upon
µν construct a plane parallel to εη; this will intersect the prism cut off from
the whole prism in a right-angled triangle one side of which is µν and the
other a straight line in the plane upon γδ perpendicular to γδ at ν and
equal to the axis of the cylinder, but whose hypotenuse is in the intersecting
plane. It will intersect the portion which is cut off from the cylinder by the

Fig. 12.

plane passed through εη and the side
of the square opposite the side γδ
in a right-angled triangle one side of
which is µξ and the other a straight
line drawn in the surface of the cylin-
der perpendicular to the plane κν,
and the hypotenuse . . . . . . . . . . . . . . . .
and all the triangles in the prism
: all the triangles in the cylinder-
section = all the straight lines in the
parallelogram δη : all the straight
lines between the parabola and the
straight line εη. And the prism con-
sists of the triangles in the prism,
the cylinder-section of those in the
cylinder-section, the parallelogram
δη of the straight lines in the paral-
lelogram δη‖κζ and the segment of
the parabola of the straight lines cut off by the parabola and the straight
line εη; hence prism : cylinder-section = parallelogram ηδ : segment εζη
that is bounded by the parabola and the straight line εη. But the parallelo-
gram δη = 3

2
the segment bounded by the parabola and the straight line εη

as indeed has been shown in the previously published work, hence also the
prism is equal to one and one half times the cylinder-section. Therefore when
the cylinder-section = 2, the prism = 3 and the whole prism containing the
cylinder equals 12, because it is four times the size of the other prism; hence
the cylinder-section is equal to 1

6
of the prism, Q. E. D.
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Proposition XIV

[Inscribe a cylinder in] a perpendicular prism with square bases [and let it
be cut by a plane passed through the center of the base of the cylinder
and one side of the opposite square.] Then this plane will cut off a prism
from the whole prism and a portion of the cylinder from the cylinder. It
may be proved that the portion cut off from the cylinder by the plane is
one-sixth of the whole prism. But first we will prove that it is possible to in-
scribe a solid figure in the cylinder-section and to circumscribe another com-
posed of prisms of equal altitude and with similar triangles as bases, so that
the circumscribed figure exceeds the inscribed less than any given magni-
tude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

But it has been shown that the prism cut off by the inclined plane < 3
2

the
body inscribed in the cylinder-section. Now the prism cut off by the inclined
plane : the body inscribed in the cylinder-section = parallelogram δη : the
parallelograms which are inscribed in the segment bounded by the parabola
and the straight line εη. Hence the parallelogram δη < 3

2
the parallelograms

in the segment bounded by the parabola and the straight line εη. But this is
impossible because we have shown elsewhere that the parallelogram δη is one
and one half times the segment bounded by the parabola and the straight
line εη, consequently is . . . . . . . . . . . . . . . . . . . .not greater . . . . . . . . . . . . . . . . . . . .

And all prisms in the prism cut off by the inclined plane : all prisms in
the figure described around the cylinder-section = all parallelograms in the
parallelogram δη : all parallelograms in the figure which is described around
the segment bounded by the parabola and the straight line εη, i. e., the prism
cut off by the inclined plane : the figure described around the cylinder-section
= parallelogram δη : the figure bounded by the parabola and the straight
line εη. But the prism cut off by the inclined plane is greater than one and
one half times the solid figure circumscribed around the cylinder-section . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

28


