Mathematics 3810H - Ancient and classical mathematics

Trent University, Fall 2013

Assignment \#3

Due on Friday, 18 October, 2011
One of the things that Eudoxus is supposed to have proved is that the area of a circle is proportional to the square of its diameter. It is likely that proof of this given in Book XII of Euclid's Elements is based on Eudoxus' work. The argument given there is based on inscribing regular polygons with 2^{n} sides in circles; in this assignment you will work through a variation of this argument.

1. A regular 2^{n}-gon inscribed in a circle of radius r has area $2^{n-1} r^{2} \sin \left(\frac{\pi}{2^{n-1}}\right)$. [3]

Note: Eudoxus did his work before trigonometric functions were known, so he could not have had this result.
2. Prove that a regular 2^{n}-gon inscribed in a circle takes up more than $1-\frac{1}{2^{n-1}}$ of the area of the circle. [4]
3. Use the result in $\mathbf{2}$ above to prove that the area of a circle is proportional to the square of its radius or diameter. [3]

On Problems

Our choicest plans
have fallen through, our airiest castles tumbled over, because of lines we neatly drew and later neatly stumbled over.

Piet Hein

