Mathematics 3790H - Analysis I: Introduction to analysis

TRENT UNIVERSITY, Winter 2015

Quizzes

Quiz #1. Tuesday, 13 January, 2015. [5 minutes]

1. Use the ε - δ definition of limits to verify that $\lim_{x\to 3} (41-13x) = 2$. [5]

Quiz #2. Tuesday, 20 January, 2015. [10 minutes]

1. Suppose $A \cap B \subseteq \mathbb{R}$ and $A \cap B \neq \emptyset$. Show that $\sup(A \cap B)$ is less than or equal to to both $\sup(A)$ and $\sup(B)$. [5]

Quiz #3. Tuesday, 27 January, 2015. [10 minutes]

1. Consider the sequence $a_n = 1 + \frac{(-1)^n}{n}$, where $n \ge 0$. Find a monotonic subsequence of $\{a_n\}$ and find the limit of this subsequence. [5]

Quiz #4. Tuesday, 3 Wednesday, 4 February, 2015. [10 minutes] 1. Let $a_n = \sin\left(\frac{n\pi}{4}\right)$ for $n \ge 0$. Find $\liminf_{n \to \infty} a_n$. [5]

Quiz #5. Tuesday, 10 February, 2015. [10 minutes]

1. Suppose $\sum_{k=0}^{\infty} a_k$ is a convergent series and $b_n = \sum_{k=n}^{\infty} a_k$ for each $n \ge 0$. Show that $\lim_{n \to \infty} b_n = 0$. [5]

Quiz #5. Tuesday, 10 February, 2015. [10 minutes]

1. Suppose $\sum_{n=0}^{\infty} a_n$ converges and $a_n \ge 0$ for all $n \ge 0$, and $\{b_n\}$ is a bounded sequence,

i.e. for some $B \in \mathbb{R}$, $|b_n| \leq B$ for all $n \geq 0$. Show that $\sum_{n=0}^{\infty} a_n b_n$ also converges. [5]

Quiz #6. Tuesday, 24 February, 2015. [10 minutes]

1. Suppose $\{a_k\}$ is a sequence, and let $b_n = \sum_{k=n}^{\infty} a_k$ for each $n \ge 0$. Show that if $\lim_{n \to \infty} b_n = 0$, then $\sum_{n=0}^{\infty} a_n$ converges. [5]

Quiz #7. Tuesday, 3 Wednesday, 4 March, 2015. [10 minutes]

1. Determine whether $\sum_{n=2}^{\infty} \frac{1}{n \ln(n)}$ converges or diverges. [5]

Quiz #8. Tuesday, 10 March, 2015. [10 minutes]

1. Show that f(x) = x + 1 is uniformly continuous on [0, 1]. [5]

Quiz #9. Tuesday, 17 March, 2015. [10 minutes]

Recall that $f_n \xrightarrow{\text{unif}} f$ on an interval I if for every $\varepsilon > 0$ there is an N such that for all $n \ge N$ and all $x \in I$, $|f_n(x) - f(x)| < \varepsilon$.

1. Suppose $f_n(x) = \frac{\sin(nx)}{n}$ for $n \ge 1$ and f(x) = 0 for $-\infty < x < \infty$. Verify that $f_n \xrightarrow{\text{unif}} f$ on $(-\infty, \infty)$. [5]

Quiz #10. Tuesday, 24 March, 2015. [10 minutes]

1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2} \arctan\left(\frac{x}{n}\right)$ converges uniformly on (0,1). [5]

Quiz #10. Alternate Version. [10 minutes]

1. Show that
$$\sum_{n=1}^{\infty} \frac{\left(1-\frac{x}{n}\right)^n}{2^n}$$
 converges uniformly on $[0,1]$. [5]