Mathematics 3790H - Analysis I: Introduction to analysis
 Trent University, Winter 2015

 Quizzes

 Quizzes}

Quiz \#1. Tuesday, 13 January, 2015. [5 minutes]

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 3}(41-13 x)=2$. [5]

Quiz \#2. Tuesday, 20 January, 2015. [10 minutes]

1. Suppose $A \cap B \subseteq \mathbb{R}$ and $A \cap B \neq \emptyset$. Show that $\sup (A \cap B)$ is less than or equal to to both $\sup (A)$ and $\sup (B)$. [5]

Quiz \#3. Tuesday, 27 January, 2015. [10 minutes]

1. Consider the sequence $a_{n}=1+\frac{(-1)^{n}}{n}$, where $n \geq 0$. Find a monotonic subsequence of $\left\{a_{n}\right\}$ and find the limit of this subsequence. [5]

Quiz \#4. Fuesday, 3 Wednesday, 4 February, 2015. [10 minutes]

1. Let $a_{n}=\sin \left(\frac{n \pi}{4}\right)$ for $n \geq 0$. Find $\liminf _{n \rightarrow \infty} a_{n}$. [5]

Quiz \#5. Tuesday, 10 February, 2015. [10 minutes]

1. Suppose $\sum_{k=0}^{\infty} a_{k}$ is a convergent series and $b_{n}=\sum_{k=n}^{\infty} a_{k}$ for each $n \geq 0$. Show that $\lim _{n \rightarrow \infty} b_{n}=0$. [5]

Quiz \#5. Tuesday, 10 February, 2015. [10 minutes]

1. Suppose $\sum_{n=0}^{\infty} a_{n}$ converges and $a_{n} \geq 0$ for all $n \geq 0$, and $\left\{b_{n}\right\}$ is a bounded sequence, i.e. for some $B \in \mathbb{R},\left|b_{n}\right| \leq B$ for all $n \geq 0$. Show that $\sum_{n=0}^{\infty} a_{n} b_{n}$ also converges. [5]

Quiz \#6. Tuesday, 24 February, 2015. [10 minutes]

1. Suppose $\left\{a_{k}\right\}$ is a sequence, and let $b_{n}=\sum_{k=n}^{\infty} a_{k}$ for each $n \geq 0$. Show that if $\lim _{n \rightarrow \infty} b_{n}=0$, then $\sum_{n=0}^{\infty} a_{n}$ converges. [5]

Quiz \#7. Tuesday, 3 Wednesday, 4 March, 2015. [10 minutes]

1. Determine whether $\sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$ converges or diverges. [5]

Quiz \#8. Tuesday, 10 March, 2015. [10 minutes]

1. Show that $f(x)=x+1$ is uniformly continuous on $[0,1]$. [5]

Quiz \#9. Tuesday, 17 March, 2015. [10 minutes]
Recall that $f_{n} \underset{\text { unif }}{\longrightarrow} f$ on an interval I if for every $\varepsilon>0$ there is an N such that for all $n \geq N$ and all $x \in I,\left|f_{n}(x)-f(x)\right|<\varepsilon$.

1. Suppose $f_{n}(x)=\frac{\sin (n x)}{n}$ for $n \geq 1$ and $f(x)=0$ for $-\infty<x<\infty$. Verify that $f_{n} \underset{\text { unif }}{\longrightarrow} f$ on $(-\infty, \infty)$. [5]

Quiz \#10. Tuesday, 24 March, 2015. [10 minutes]

1. Show that $\sum_{n=1}^{\infty} \frac{1}{n^{2}} \arctan \left(\frac{x}{n}\right)$ converges uniformly on $(0,1)$. [5]

Quiz \#10. Alternate Version. [10 minutes]

1. Show that $\sum_{n=1}^{\infty} \frac{\left(1-\frac{x}{n}\right)^{n}}{2^{n}}$ converges uniformly on $[0,1]$. [5]
