Mathematics 3790H - Analysis I: Real analysis

Trent University, Winter 2015
Assignment \#9
Uniform convergence
Due on Friday, 20 March, 2015.
Recall from class and the textbook that a sequence of functions $\left\{f_{n}\right\}$ converges uniformly to a function f on an interval I if for any $\varepsilon>0$ there is an N such that for all $n \geq N$ and all $x \in I,\left|f_{n}(x)-f(x)\right|<\varepsilon$. (This is often denoted by something like $f_{n} \underset{\text { unif }}{ } f$ or $f_{n} \rightarrow f$ [unif]).

1. Suppose f is a function which is defined and uniformly continuous on $(-\infty, \infty)$. Let $f_{n}(x)=f\left(x+\frac{1}{n}\right)$. Show that $f_{n} \underset{\text { unif }}{\longrightarrow} f$ on $(-\infty, \infty)$. [7]
2. Is the result stated in $\mathbf{1}$ true if one replaces "uniformly continuous" by "continuous"? Prove that it is or find a counterexample. [3]
