# Mathematics 3790H - Analysis I: Real analysis 

Trent University, Winter 2015

## Assignment \#11

## An evil Taylor series

Due on Friday, 3 April, 2015.
Let $f(x)=\left\{\begin{array}{cc}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{array}\right.$, then $f(x)$ is defined and continuous for all $x \in \mathbb{R}$.

1. Show that

$$
\frac{d^{n}}{d x^{n}} f(x)=f^{(n)}(x)=p_{3 n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}
$$

for all $x \neq 0$ and all $n \geq 1$, where $p_{3 n}(t)$ is a polynomial of degree $3 n$ in $t$. [4]
Hint: This is probably best done by induction on $n$.
2. Show that $f^{(n)}(0)=0$ for all $n \geq 1$. [4]
3. What is the Taylor series of $f(x)$ at 0 ? What is its radius of convergence? [1]
4. For what $x$ is $f(x)$ equal to its Taylor series at 0 ? [1]

Note: This function is the poster child for the fact that a Taylor series for a function does not always have to converge to the function it came from ...

