Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2014 Solutions to Assignment #1 Basic epsilonics

This assignment is a warm-up using something that you should have seen some version of in first-year caculus, the ε - δ definition of limits. Please look it up in our present text or in your old calculus textbook!

1. Use the ε - δ definition of limits to verify that $\lim_{x \to 13} (2x - 3) = 23$. [2]

SOLUTION. Suppose $\varepsilon > 0$ is given. We try to reverse-engineer the necssary $\delta > 0$:

$$|(2x-3)-23| < \varepsilon \iff |2x-26| < \varepsilon \iff 2|x-13| < \varepsilon \iff |x-13| < \frac{\varepsilon}{2}$$

Setting $\delta = \frac{\varepsilon}{2}$, we get that if $|x - 13| < \delta = \frac{\varepsilon}{2}$, then $|(2x - 3) - 23| < \varepsilon$. [To see this, note that the implications in our reverse-engineering of δ run both ways.] Thus, by the ε - δ definition of limits, $\lim_{x \to 13} (2x - 3) = 23$.

2. Use the ε - δ definition of limits to verify that $\lim_{x\to 2} x^2 = 4$. [3]

Solution. Suppose $\varepsilon > 0$ is given. We try to reverse-engineer the necessary $\delta > 0$:

$$|x^2 - 4| < \varepsilon \iff |x - 2| \cdot |x + 2| < \varepsilon \iff |x - 2| < \frac{\varepsilon}{|x + 2|},$$

just so long as $x + 2 \neq 0$, *i.e.* as long as $x \neq -2$. Besides the problem that we must ensure that $x \neq -2$, we also cannot have δ depend on x. We can solve both of these problems by only accepting δ s small enough to ensure that if $|x - 2| < \delta$, then $x \neq -2$ with some margin to spare. For example, suppose we accept only $0 < \delta \leq 1$. If $|x - 2| < \delta \leq 1$, then

$$\begin{aligned} |x-2| < 1 \; \Rightarrow \; -1 < x-2 < 1 \; \Rightarrow \; 1 < x < 3 \\ \Rightarrow \; 3 < x+2 < 5 \; \Rightarrow \; \frac{1}{3} > \frac{1}{x+2} = \frac{1}{|x+2|} > \frac{1}{5} \end{aligned}$$

It follows that if $\delta = \min\left(1, \frac{\varepsilon}{5}\right)$, then, whenever $|x-2| < \delta$, we have |x-2| < 1, and so $|x-2| < \frac{\varepsilon}{5} < \frac{\varepsilon}{|x+2|}$, from which it follows that $|x^2 - 4| < \varepsilon$, by our initial attempt at reverse-engineering δ . Thus, by the ε - δ definition of limits, $\lim_{x \to 2} x^2 = 4$.

3. Use the ε - δ definition of limits to verify that $\lim_{x\to c} x^2 = c^2$ for every real number c. [4] *Hint:* You may find it useful to consider the cases c = 0 and $c \neq 0$ separately in doing **3**. SOLUTION. The method used in the solution to question 2 above will work here, though a little care must be taken to avoid accidentally dividing by 0 and the like.

Suppose $\varepsilon > 0$ is given. We try to reverse-engineer the necessary $\delta > 0$:

$$|x^2 - c^2| < \varepsilon \iff |x - c| \cdot |x + c| < \varepsilon \iff |x - c| < \frac{\varepsilon}{|x + c|},$$

just so long as $x + c \neq 0$, *i.e.* as long as $x \neq -c$. Again, we also have the problem that δ cannot depend on x. Note that we cannot proceed naively as in the solution to 2 by only accepting δ s small enough to ensure that if $|x - c| < \delta$, then $x \neq -c$ with some margin to spare if c = 0 = -0. We will therefore assume that $c \neq 0$ and then take care of the case that c = 0 separately.

i. In the case that $c \neq 0$, we will accept only $0 < \delta \leq |c|$. If $|x - c| < \delta \leq |c|$, then

$$\begin{aligned} |x - c| < |c| &\Rightarrow -|c| < x - c < |c| \Rightarrow c - |c| < x < c + |c| \\ &\Rightarrow 2c - |c| < x + c < 2c + |c|. \end{aligned}$$

Note that it is possible here that x + c < 0, and, indeed, that 2c - |c| < 0, so we don't have quite as easy a time as in the solution to 2 even in this case. However, whether the items in the last inequality of our reverse-engineering attempt above are negative or positive, it is still true (assuming |x - c| < |c|) that it follows that |c| < |x + c| < 3|c|, and hence that $\frac{1}{|c|} > \frac{1}{|x+c|} > \frac{1}{3|c|}$. (Recall that $c \neq 0$ in this case ...)

It follows that if $\delta = \min\left(\left|c\right|, \frac{\varepsilon}{3|c|}\right)$, then, whenever $|x-c| < \delta$, we have |x-c| < |c|, and so $|x-c| < \frac{\varepsilon}{3|c|} < \frac{\varepsilon}{|x+c|}$, from which it follows that $|x^2 - c^2| < \varepsilon$, by our initial attempt at reverse-engineering δ . \Box

ii. In the case that c = 0, we have

$$|x^2 - 0^2| < \varepsilon \iff |x^2| < \varepsilon \iff |x| < \sqrt{\varepsilon} \iff |x - 0| < \sqrt{\varepsilon}$$
.

Since every implication above is reversible, it follows that of we take $\delta = \sqrt{\varepsilon}$, then whenever $|x - 0| < \sqrt{\varepsilon}$, we get $|x^2 - 0^2| < \varepsilon$, as required. \Box

Thus, no matter what $c \in \mathbb{R}$ we may have, for very $\varepsilon > 0$, there is a $\delta > 0$, such that if $|x - c| < \delta$, then $|x^2 - c^2| < \varepsilon$. Hence, by the ε - δ definition of limits, $\lim_{x \to c} x^2 = c^2$ for every $c \in \mathbb{R}$.