Mathematics 3790H - Analysis I: Introduction to analysis
 Trent University, Winter 2014

Solutions to Assignment \#1 Basic epsilonics

This assignment is a warm-up using something that you should have seen some version of in first-year caculus, the $\varepsilon-\delta$ definition of limits. Please look it up in our present text or in your old calculus textbook!

1. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 13}(2 x-3)=23$. [2]

Solution. Suppose $\varepsilon>0$ is given. We try to reverse-engineer the necssary $\delta>0$:

$$
|(2 x-3)-23|<\varepsilon \Leftrightarrow|2 x-26|<\varepsilon \Leftrightarrow 2|x-13|<\varepsilon \Leftrightarrow|x-13|<\frac{\varepsilon}{2}
$$

Setting $\delta=\frac{\varepsilon}{2}$, we get that if $|x-13|<\delta=\frac{\varepsilon}{2}$, then $|(2 x-3)-23|<\varepsilon$. [To see this, note that the implications in our reverse-engineering of δ run both ways.] Thus, by the $\varepsilon-\delta$ definition of limits, $\lim _{x \rightarrow 13}(2 x-3)=23$.
2. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow 2} x^{2}=4$. [3]

Solution. Suppose $\varepsilon>0$ is given. We try to reverse-engineer the necessary $\delta>0$:

$$
\left|x^{2}-4\right|<\varepsilon \Leftrightarrow|x-2| \cdot|x+2|<\varepsilon \Leftrightarrow|x-2|<\frac{\varepsilon}{|x+2|},
$$

just so long as $x+2 \neq 0$, i.e. as long as $x \neq-2$. Besides the problem that we must ensure that $x \neq-2$, we also cannot have δ depend on x. We can solve both of these problems by only accepting δ s small enough to ensure that if $|x-2|<\delta$, then $x \neq-2$ with some margin to spare. For example, suppose we accept only $0<\delta \leq 1$. If $|x-2|<\delta \leq 1$, then

$$
\begin{aligned}
|x-2|<1 & \Rightarrow-1<x-2<1 \Rightarrow 1<x<3 \\
& \Rightarrow 3<x+2<5 \Rightarrow \frac{1}{3}>\frac{1}{x+2}=\frac{1}{|x+2|}>\frac{1}{5}
\end{aligned}
$$

It follows that if $\delta=\min \left(1, \frac{\varepsilon}{5}\right)$, then, whenever $|x-2|<\delta$, we have $|x-2|<1$, and so $|x-2|<\frac{\varepsilon}{5}<\frac{\varepsilon}{|x+2|}$, from which it follows that $\left|x^{2}-4\right|<\varepsilon$, by our initial attempt at reverse-engineering δ. Thus, by the $\varepsilon-\delta$ definition of limits, $\lim _{x \rightarrow 2} x^{2}=4$.
3. Use the $\varepsilon-\delta$ definition of limits to verify that $\lim _{x \rightarrow c} x^{2}=c^{2}$ for every real number c. [4] Hint: You may find it useful to consider the cases $c=0$ and $c \neq 0$ separately in doing 3.
Solution. The method used in the solution to question 2 above will work here, though a little care must be taken to avoid accidentally dividing by 0 and the like.

Suppose $\varepsilon>0$ is given. We try to reverse-engineer the necessary $\delta>0$:

$$
\left|x^{2}-c^{2}\right|<\varepsilon \Leftrightarrow|x-c| \cdot|x+c|<\varepsilon \Leftrightarrow|x-c|<\frac{\varepsilon}{|x+c|},
$$

just so long as $x+c \neq 0$, i.e. as long as $x \neq-c$. Again, we also have the problem that δ cannot depend on x. Note that we cannot proceed naively as in the solution to 2 by only accepting δ s small enough to ensure that if $|x-c|<\delta$, then $x \neq-c$ with some margin to spare if $c=0=-0$. We will therefore assume that $c \neq 0$ and then take care of the case that $c=0$ separately.
i. In the case that $c \neq 0$, we will accept only $0<\delta \leq|c|$. If $|x-c|<\delta \leq|c|$, then

$$
\begin{aligned}
|x-c|<|c| & \Rightarrow-|c|<x-c<|c| \Rightarrow c-|c|<x<c+|c| \\
& \Rightarrow 2 c-|c|<x+c<2 c+|c| .
\end{aligned}
$$

Note that it is possible here that $x+c<0$, and, indeed, that $2 c-|c|<0$, so we don't have quite as easy a time as in the solution to 2 even in this case. However, whether the items in the last inequality of our reverse-engineering attempt above are negative or positive, it is still true (assuming $|x-c|<|c|$) that it follows that $|c|<|x+c|<3|c|$, and hence that $\frac{1}{|c|}>\frac{1}{|x+c|}>\frac{1}{3|c|}$. (Recall that $c \neq 0$ in this case $\left.\ldots\right)$

It follows that if $\delta=\min \left(|c|, \frac{\varepsilon}{3|c|}\right)$, then, whenever $|x-c|<\delta$, we have $|x-c|<|c|$, and so $|x-c|<\frac{\varepsilon}{3|c|}<\frac{\varepsilon}{|x+c|}$, from which it follows that $\left|x^{2}-c^{2}\right|<\varepsilon$, by our initial attempt at reverse-engineering δ.
ii. In the case that $c=0$, we have

$$
\left|x^{2}-0^{2}\right|<\varepsilon \Leftrightarrow\left|x^{2}\right|<\varepsilon \Leftrightarrow|x|<\sqrt{\varepsilon} \Leftrightarrow|x-0|<\sqrt{\varepsilon} \text {. }
$$

Since every implication above is reversible, it follows that of we take $\delta=\sqrt{\varepsilon}$, then whenever $|x-0|<\sqrt{\varepsilon}$, we get $\left|x^{2}-0^{2}\right|<\varepsilon$, as required.

Thus, no matter what $c \in \mathbb{R}$ we may have, for very $\varepsilon>0$, there is a $\delta>0$, such that if $|x-c|<\delta$, then $\left|x^{2}-c^{2}\right|<\varepsilon$. Hence, by the $\varepsilon-\delta$ definition of limits, $\lim _{x \rightarrow c} x^{2}=c^{2}$ for every $c \in \mathbb{R}$.

