
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Winter 2014

Solutions to Assignment #1
Basic epsilonics

This assignment is a warm-up using something that you should have seen some version
of in first-year caculus, the ε–δ definition of limits. Please look it up in our present text
or in your old calculus textbook!

1. Use the ε–δ definition of limits to verify that lim
x→13

(2x− 3) = 23. [2]

Solution. Suppose ε > 0 is given. We try to reverse-engineer the necssary δ > 0:

|(2x− 3)− 23| < ε ⇔ |2x− 26| < ε ⇔ 2|x− 13| < ε ⇔ |x− 13| < ε

2

Setting δ = ε
2 , we get that if |x − 13| < δ = ε

2 , then |(2x− 3)− 23| < ε. [To see this,
note that the implications in our reverse-engineering of δ run both ways.] Thus, by the
ε–δ definition of limits, lim

x→13
(2x− 3) = 23. �

2. Use the ε–δ definition of limits to verify that lim
x→2

x2 = 4. [3]

Solution. Suppose ε > 0 is given. We try to reverse-engineer the necessary δ > 0:∣∣x2 − 4
∣∣ < ε ⇔ |x− 2| · |x+ 2| < ε ⇔ |x− 2| < ε

|x+ 2|
,

just so long as x+ 2 6= 0, i.e. as long as x 6= −2. Besides the problem that we must ensure
that x 6= −2, we also cannot have δ depend on x. We can solve both of these problems
by only accepting δs small enough to ensure that if |x − 2| < δ, then x 6= −2 with some
margin to spare. For example, suppose we accept only 0 < δ ≤ 1. If |x− 2| < δ ≤ 1, then

|x− 2| < 1 ⇒ −1 < x− 2 < 1 ⇒ 1 < x < 3

⇒ 3 < x+ 2 < 5 ⇒ 1

3
>

1

x+ 2
=

1

|x+ 2|
>

1

5
.

It follows that if δ = min
(

1, ε
5

)
, then, whenever |x − 2| < δ, we have |x − 2| < 1, and

so |x − 2| < ε
5 <

ε
|x+2| , from which it follows that

∣∣x2 − 4
∣∣ < ε, by our initial attempt at

reverse-engineering δ. Thus, by the ε–δ definition of limits, lim
x→2

x2 = 4. �

3. Use the ε–δ definition of limits to verify that lim
x→c

x2 = c2 for every real number c. [4]

Hint: You may find it useful to consider the cases c = 0 and c 6= 0 separately in doing 3.

Solution. The method used in the solution to question 2 above will work here, though a
little care must be taken to avoid accidentally dividing by 0 and the like.
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Suppose ε > 0 is given. We try to reverse-engineer the necessary δ > 0:∣∣x2 − c2∣∣ < ε ⇔ |x− c| · |x+ c| < ε ⇔ |x− c| < ε

|x+ c|
,

just so long as x+ c 6= 0, i.e. as long as x 6= −c. Again, we also have the problem that δ
cannot depend on x. Note that we cannot proceed naively as in the solution to 2 by only
accepting δs small enough to ensure that if |x− c| < δ, then x 6= −c with some margin to
spare if c = 0 = −0. We will therefore assume that c 6= 0 and then take care of the case
that c = 0 separately.

i. In the case that c 6= 0, we will accept only 0 < δ ≤ |c|. If |x− c| < δ ≤ |c|, then

|x− c| < |c| ⇒ −|c| < x− c < |c| ⇒ c− |c| < x < c+ |c|
⇒ 2c− |c| < x+ c < 2c+ |c| .

Note that it is possible here that x+ c < 0, and, indeed, that 2c−|c| < 0, so we don’t have
quite as easy a time as in the solution to 2 even in this case. However, whether the items
in the last inequality of our reverse-engineering attempt above are negative or positive, it
is still true (assuming |x− c| < |c|) that it follows that |c| < |x+ c| < 3|c|, and hence that
1
|c| >

1
|x+c| >

1
3|c| . (Recall that c 6= 0 in this case . . . )

It follows that if δ = min
(
|c|, ε

3|c|

)
, then, whenever |x− c| < δ, we have |x− c| < |c|,

and so |x−c| < ε
3|c| <

ε
|x+c| , from which it follows that

∣∣x2 − c2∣∣ < ε, by our initial attempt

at reverse-engineering δ. �

ii. In the case that c = 0, we have∣∣x2 − 02
∣∣ < ε ⇔

∣∣x2∣∣ < ε ⇔ |x| <
√
ε ⇔ |x− 0| <

√
ε .

Since every implication above is reversible, it follows that of we take δ =
√
ε, then whenever

|x− 0| <
√
ε, we get

∣∣x2 − 02
∣∣ < ε, as required. �

Thus, no matter what c ∈ R we may have, for very ε > 0, there is a δ > 0, such that
if |x − c| < δ, then

∣∣x2 − c2∣∣ < ε. Hence, by the ε–δ definition of limits, lim
x→c

x2 = c2 for

every c ∈ R. �
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