Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2014

Quizzes

Quiz #1. Tuesday, 14 January, 2014. [10 minutes]

1. Suppose you are given that $\inf \left\{ \frac{1}{n} \mid n \in \mathbb{N} \text{ and } n > 0 \right\} = 0$. Use this fact to help prove the Archimedean Property of \mathbb{R} , *i.e.* that \mathbb{N} has no upper bound in \mathbb{R} . [5]

Quiz #2. Tuesday, 21 January, 2014. [10 minutes]

1. Suppose that $\{s_n\}$ and $\{t_n\}$ are sequences with $\lim_{n \to \infty} s_n = 3$ and $\lim_{n \to \infty} (t_n - s_n) = 0$. Use the ε -N definition of the limit of a sequence to show that $\lim_{n \to \infty} t_n = 3$, too. [5]

Quiz #3. Tuesday, 28 January, 2014. [10 minutes]

1. Show that $\lim_{n \to \infty} \frac{\cos(n)}{n} = 0$. [With or without epsilonics – your choice!] [5]

Quiz #4. Tuesday, 4 February, 2014. [10 minutes]

1. Suppose that $\{s_{n_k}\}$ is a subsequence of the sequence $\{s_n\}$. Which of

$$\limsup_{n \to \infty} s_n \ge \limsup_{k \to \infty} s_{n_k} \quad \text{or} \quad \limsup_{n \to \infty} s_n \le \limsup_{k \to \infty} s_{n_k}$$

must be true? Explain why! [5]

Quiz #5. Tuesday, 11 February, 2014. [10 minutes]

1. Suppose $\sum_{n=1}^{\infty} |a_n|$ is a convergent series. Show that $\sum_{n=1}^{\infty} a_n$ converges as well. [5]

Quiz #6. Tuesday, 25 February, 2014. [10 minutes]

1. Suppose $\sum_{k=1}^{\infty} a_k$ converges. Does it follow that $\sum_{k=1}^{n} ka_k$ is bounded for all *n*? Prove it or give a counterexample. [5]

Quiz #7. Tuesday, 4 March, 2014. [10 minutes]

1. It turns out that
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln(2)$$
. If so, what is
 $\sum_{k=0}^{\infty} \left[\frac{1}{2k+1} - \frac{1}{4k+2} - \frac{1}{4k+4} \right] = 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} - \frac{1}{12} + \dots$? [5]

Quiz #8. Tuesday, 11 March, 2014. [10 minutes]

1. For each $n \ge 0$, let $f_n : \mathbb{R} \to \mathbb{R}$ be defined by $f_n(x) = \arctan(nx)$. Determine the function $f : \mathbb{R} \to \mathbb{R}$ that is the pointwise limit of the f_n (*i.e.* such that $f_n(x) \to f(x)$ for each $x \in \mathbb{R}$), and whether it is continuous or not. [5]

Quiz #9. Tuesday, 18 March, 2014. [10 minutes]

1. Suppose that for $n \ge 0$, $p_n(x) = a_n x^n$ for a sequence $\{a_n\}$ of positive real numbers such that $\lim_{n \to 0} a_n = 0$, and let $\zeta(x) = 0$ for all x. Show that $p_n \xrightarrow{\text{unif}} \zeta$ on [-1, 1]. [5]

Quiz #10. Tuesday, 25 March, 2014. [15 minutes]

1. Find a power series equal to $f(x) = \frac{1}{(1-x)^2}$ (when it converges) and determine its interval of convergence. [5]

Hint: $\frac{d}{dx}\left(\frac{1}{1-x}\right) = \frac{1}{(1-x)^2}$. Mind you, there is at least one completely different way to get the series ...

Quiz #11. Wednesday, 2 April, 2014. [20 minutes]

- 1. Use Taylor's formula to find the Taylor series at 0 of $f(x) = e^{x/2}$. [3]
- 2. Show that the Taylor series at 0 of f(x) converges (pointwise) to f(x) for all x. [2] *Hint:* The Lagrange form of the *n*th remainder term for the Taylor series at 0 is $R_n(x) = \frac{f^{(n)}(t)}{n!}x^n$, where t is between 0 and x.