Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2014
 Quizzes

Quiz \#1. Tuesday, 14 January, 2014. [10 minutes]

1. Suppose you are given that $\inf \left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right.$ and $\left.n>0\right\}=0$. Use this fact to help prove the Archimedean Property of \mathbb{R}, i.e. that \mathbb{N} has no upper bound in \mathbb{R}. [5]

Quiz \#2. Tuesday, 21 January, 2014. [10 minutes]

1. Suppose that $\left\{s_{n}\right\}$ and $\left\{t_{n}\right\}$ are sequences with $\lim _{n \rightarrow \infty} s_{n}=3$ and $\lim _{n \rightarrow \infty}\left(t_{n}-s_{n}\right)=0$. Use the $\varepsilon-N$ definition of the limit of a sequence to show that $\lim _{n \rightarrow \infty} t_{n}=3$, too. [5]
Quiz \#3. Tuesday, 28 January, 2014. [10 minutes]
2. Show that $\lim _{n \rightarrow \infty} \frac{\cos (n)}{n}=0$. [With or without epsilonics - your choice!] [5]

Quiz \#4. Tuesday, 4 February, 2014. [10 minutes]

1. Suppose that $\left\{s_{n_{k}}\right\}$ is a subsequence of the sequence $\left\{s_{n}\right\}$. Which of

$$
\limsup _{n \rightarrow \infty} s_{n} \geq \limsup _{k \rightarrow \infty} s_{n_{k}} \quad \text { or } \quad \limsup _{n \rightarrow \infty} s_{n} \leq \limsup _{k \rightarrow \infty} s_{n_{k}}
$$

must be true? Explain why! [5]
Quiz \#5. Tuesday, 11 February, 2014. [10 minutes]

1. Suppose $\sum_{n=1}^{\infty}\left|a_{n}\right|$ is a convergent series. Show that $\sum_{n=1}^{\infty} a_{n}$ converges as well. [5]

Quiz \#6. Tuesday, 25 February, 2014. [10 minutes]

1. Suppose $\sum_{k=1}^{\infty} a_{k}$ converges. Does it follow that $\sum_{k=1}^{n} k a_{k}$ is bounded for all n ? Prove it or give a counterexample. [5]
Quiz \#7. Tuesday, 4 March, 2014. [10 minutes]
2. It turns out that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots=\ln (2)$. If so, what is $\sum_{k=0}^{\infty}\left[\frac{1}{2 k+1}-\frac{1}{4 k+2}-\frac{1}{4 k+4}\right]=1-\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{6}-\frac{1}{8}+\frac{1}{5}-\frac{1}{10}-\frac{1}{12}+\ldots ?$ [5]

Quiz \#8. Tuesday, 11 March, 2014. [10 minutes]

1. For each $n \geq 0$, let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\arctan (n x)$. Determine the function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is the pointwise limit of the f_{n} (i.e. such that $f_{n}(x) \rightarrow f(x)$ for each $x \in \mathbb{R}$), and whether it is continuous or not. [5]

Quiz \#9. Tuesday, 18 March, 2014. [10 minutes]

1. Suppose that for $n \geq 0, p_{n}(x)=a_{n} x^{n}$ for a sequence $\left\{a_{n}\right\}$ of positive real numbers such that $\lim _{n \rightarrow 0} a_{n}=0$, and let $\zeta(x)=0$ for all x. Show that $p_{n} \underset{\text { unif }}{\longrightarrow} \zeta$ on $[-1,1]$. [5]
Quiz \#10. Tuesday, 25 March, 2014. [15 minutes]
2. Find a power series equal to $f(x)=\frac{1}{(1-x)^{2}}$ (when it converges) and determine its interval of convergence. [5]
Hint: $\frac{d}{d x}\left(\frac{1}{1-x}\right)=\frac{1}{(1-x)^{2}}$. Mind you, there is at least one completely different way to get the series...

Quiz \#11. Wednesday, 2 April, 2014. [20 minutes]

1. Use Taylor's formula to find the Taylor series at 0 of $f(x)=e^{x / 2}$. [3]
2. Show that the Taylor series at 0 of $f(x)$ converges (pointwise) to $f(x)$ for all x. [2]

Hint: The Lagrange form of the nth remainder term for the Taylor series at 0 is $R_{n}(x)=\frac{f^{(n)}(t)}{n!} x^{n}$, where t is between 0 and x.

