
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Winter 2014

Solutions to the Quizzes

Quiz #1. Tuesday, 14 January, 2014. [10 minutes]

1. Suppose you are given that inf
{

1
n | n ∈ N and n > 0

}
= 0. Use this fact to help

prove the Archimedean Property of R, i.e. that N has no upper bound in R. [5]

Solution. Suppose, by way of contradiction, that u ∈ R was an upper bound for N, i.e.
n < u for all n ∈ N.

Since 0 < u (remember that 0 ∈ N), we have that 0 < 1
u . [The reciprocal of a positive

number is also positive.]
On the other hand, since n < u for all n ∈ N with n > 0, we have 1

n > 1
u for all

such n. [Taking reciprocals reverses inequalities.] It follows that 1
u is a lower bound for{

1
n | n ∈ N and n > 0

}
. Since we are given that inf

{
1
n | n ∈ N and n > 0

}
= 0, it follows

that 1
u ≤ 0.

Thus 0 < 1
u ≤ 0, so 0 < 0, which is impossible. Since assuming otherwise led to a

contradiction, N has no upper bound in R. �

Quiz #2. Tuesday, 21 January, 2014. [10 minutes]

1. Suppose that {sn} and {tn} are sequences with lim
n→∞

sn = 3 and lim
n→∞

(tn − sn) = 0.

Use the ε–N definition of the limit of a sequence to show that lim
n→∞

tn = 3, too. [5]

Solution. lim
n→∞

sn = 3 means that ∀α > 0 ∃M ∈ N ∀m ≥ M : |sm − 3| < α. Similarly,

lim
n→∞

(tn − sn) = 0 means that ∀β > 0 ∃K ∈ N ∀k ≥ K : |(tk − sk)− 0| < β.

We need to show that lim
n→∞

tn = 3, i.e. that ∀ε > 0 ∃N ∈ N ∀n ≥ N : |tn − 3| < ε.

Suppose ε > 0. Observe that for all n,

|tn − 3| = |tn − sn + sn − 3| ≤ |tn − sn|+ |sn − 3| ,

by the triangle inequality. Let α = β = ε
2 ; then α = β > 0. It follows that there is an

M ∈ N such that for all m ≥M , |sm − 3| < α, as well as a K ∈ N such that for all k ≥ K,
|(tk − sk)− 0| < β. Let N = max (M,K). Then for all n ≥ N we have that n ≥ M and
n ≥ K, so

|tn − 3| ≤ |tn − sn|+ |sn − 3| < β + α =
ε

2
+
ε

2
= ε ,

as required.
Thus lim

n→∞
tn = 3. �
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Quiz #3. Tuesday, 28 January, 2014. [10 minutes]

1. Show that lim
n→∞

cos(n)

n
= 0. [With or without epsilonics – your choice!] [5]

Solution. [Without epsilonics, of course!] Recall that −1 ≤ cos(x) ≤ 1 for all x ∈ R; it

follows that −1 ≤ cos(n) ≤ 1 for all n ∈ N ( R, and hence that − 1

n
≤ cos(n)

n
≤ 1

n
for all

n ∈ N. (Well, other than n = 0, which doesn’t matter because . . . :-) Since lim
n→∞

(
− 1

n

)
=

lim
n→∞

1

n
= 0, it follows by the Squeeze Theorem that lim

n→∞

cos(n)

n
= 0. �

Quiz #4. Tuesday, 4 February, 2014. [10 minutes]

1. Suppose that {snk
} is a subsequence of the sequence {sn}. Which of

lim sup
n→∞

sn ≥ lim sup
k→∞

snk
or lim sup

n→∞
sn ≤ lim sup

k→∞
snk

must be true? Explain why! [5]

Solution. Recall, from class or the textbook, that

lim sup
n→∞

sn = inf {β | ∃N∀n ≥ N : sn < β }

and
lim sup
k→∞

snk
= inf {β | ∃K∀k ≥ K : snk

< β } .

Suppose β ∈ R is such that for some N we have that for all n ≥ N , sn < β. Then there is
a K such that for all k ≥ K, nk ≥ N , and so snk

< β, too. Thus

{β | ∃N∀n ≥ N : sn < β } ⊆ {β | ∃K∀k ≥ K : snk
< β } ,

and the greatest lower bound of a subset of a given set cannot be smaller than the greatest
lower bound of the given set. (Think about it!) It follows that we must have

lim sup
n→∞

sn = inf {β | ∃N∀n ≥ N : sn < β }

≥ inf {β | ∃K∀k ≥ K : snk
< β } = lim sup

k→∞
snk

. �
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Quiz #5. Tuesday, 11 February, 2014. [10 minutes]

1. Suppose
∞∑
n=1
|an| is a convergent series. Show that

∞∑
n=1

an converges as well. [5]

Solution. We will use the Cauchy Convergence Criterion twice, once in each direction of
the “if and only if” statement.

First, since
∞∑
n=1
|an| converges, it follows by the Cauchy Convergence Criterion that

for all ε > 0, there is an N ∈ N such that if m ≥ k ≥ N , then
m∑

n=k+1

|an| < ε.

Second, suppose an ε > 0 is given. If we choose N as above, then∣∣∣∣∣
m∑

n=k+1

an

∣∣∣∣∣ ≤
m∑

n=k+1

|an| < ε .

Thus the series
∞∑
n=1

an satisfies the Cauchy Convergence Criterion, and so converges. �

Quiz #6. Tuesday, 25 February, 2014. [10 minutes]

1. Suppose

∞∑
k=1

ak converges. Does it follow that

n∑
k=1

kak is bounded for all n? Prove it

or give a counterexample. [5]

Solution. Here is a counterexample: Let ak =
1

k2
for k ≥ 1. Then, on the one hand,

∞∑
k=1

ak =
∞∑
k=1

1

k2
converges (e.g. by the p-Test, since 2 > 1). On the other hand,

n∑
k=1

kak =

n∑
k=1

k

k2
=

n∑
k=1

1

k
→∞ (and so is not bounded) as n→∞, since the harmonic series

∞∑
k=1

1

k

is a series of positive terms that diverges. �
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Quiz #7. Tuesday, 4 March, 2014. [10 minutes]

1. It turns out that
∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · = ln(2). If so, what is

∞∑
k=0

[
1

2k + 1
− 1

4k + 2
− 1

4k + 4

]
= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . . ? [5]

Solution. Brute algebra and pattern recognition:

∞∑
k=0

[
1

2k + 1
− 1

4k + 2
− 1

4k + 4

]
= 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . .

=

(
1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
− 1

12
+ . . .

=
1

2
− 1

4
+

1

6
− 1

8
+

1

10
− 1

12
+ . . .

=
1

2

[
1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . .

]
=

1

2
ln(2) �

Quiz #8. Tuesday, 11 March, 2014. [10 minutes]

1. For each n ≥ 0, let fn : R → R be defined by fn(x) = arctan(nx). Determine the
function f : R→ R that is the pointwise limit of the fn (i.e. such that fn(x)→ f(x)
for each x ∈ R), and whether it is continuous or not. [5]

Solution. There are three cases we need to consider, depending on whether x < 0, x = 0,
or x > 0:

i. If x < 0, then lim
n→∞

fn(x) = lim
n→∞

arctan(nx) = lim
t→−∞

arctan(t) = −π
2

.

ii. If x = 0, then lim
n→∞

fn(0) = lim
n→∞

arctan(n · 0) = lim
n→∞

arctan(0) = 0.

iii. If x > 0, then lim
n→∞

fn(x) = lim
n→∞

arctan(nx) = lim
t→∞

arctan(t) =
π

2
.

It follows that f(x) =


−π2 x < 0

0 x = 0
π
2 x > 0

, which has a double jump discontinuity at 0, but is

continuous everywhere else. �
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Quiz #9. Tuesday, 18 March, 2014. [10 minutes]

1. Suppose that for n ≥ 0, pn(x) = anx
n for a sequence {an} of positive real numbers

such that lim
n→0

an = 0, and let ζ(x) = 0 for all x. Show that pn −→
unif

ζ on [−1, 1]. [5]

Solution. We need to show that for any ε > 0, there is an N ∈ N such that for all n ≥ N
and all x ∈ [−1, 1], |pn(x)− ζ(x)| < ε.

Suppose that an ε > 0 is given. Choose N such that if n ≥ N , then |an − 0| = an < ε.
Then, for all n ≥ N and all x ∈ [−1, 1], we have

|pn(x)− ζ(x)| = |anxn − 0| = an|x|n ≤ an1n = an < ε .

It follows by definition that pn −→
unif

ζ on [−1, 1]. �

Quiz #10. Tuesday, 18 March, 2014. [15 minutes]

1. Find a power series equal to f(x) =
1

(1− x)2
(when it converges) and determine its

interval of convergence. [5]

Hint:
d

dx

(
1

1− x

)
=

1

(1− x)2
. Mind you, there is at least one completely different

way to get the series . . .

Solution. We’ll use the hint and the facts that, by the formula for the sum of a geometric

series,
1

1− x
= 1+x+x2+ · · · , and that a power series may be differentiated term-by-term

within its radius of convergence:

1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

(
1 + x+ x2 + x3 + · · ·+ xn + · · ·

)
=

d

dx
1 +

d

dx
x+

d

dx
x2 +

d

dx
x3 + · · ·+ d

dx
xn + · · ·

= 0 + 1 + 2x+ 3x2 + · · ·+ nxn−1 + · · · =
∞∑
n=1

nxn−1

It remains to determine the interval of convergence of this power series. First, note
that the radius of convergence must be the same as that of the parent geometric series,
namely R = 1. (This can also be obtained directly using the Ratio or the Root Test.)
Second, at the endpoints x = ±1, we have

lim
n→∞

∣∣n(±1)n−1
∣∣ = lim

n→∞
n =∞ 6= 0 ,

so the series diverges at both endpoints by the Divergence Test. �
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Quiz #11. Wednesday, 2 April, 2014. [20 minutes]

1. Use Taylor’s formula to find the Taylor series at 0 of f(x) = ex/2. [3]

2. Show that the Taylor series at 0 of f(x) converges (pointwise) to f(x) for all x. [2]

Hint: The Lagrange form of the nth remainder term for the Taylor series at 0 is

Rn(x) = f(n)(t)
n! xn, where t is between 0 and x.

Solution to 1. We’ll take some derivatives and evaluate them at 0. Note that d
dxe

x/2 =

ex/2 d
dx

(
x
2

)
= 1

2e
x/2 and that e0/2 = e0 = 1.

n f (n)(x) f (n)(0)
0 ex/2 1
1 1

2e
x/2 1

2

2 1
4e
x/2 1

4

3 1
8e
x/2 1

8
...

...
...

n 1
2n e

x/2 1
2n

...
...

...

Plugging this into Taylor’s formula at 0 gives:

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

1
2n

n!
xn =

∞∑
n=0

xn

2nn!
�

Solution to 2. By definition,

∞∑
n=0

f (n)(0)

n!
xn = lim

k→∞
Tn(x), where Tn(x) =

n∑
k=0

f (k)(0)

k!
xk,

and so the series converges to f(x) for some x when lim
n→∞

Rn(x) = lim
n→∞

[f(x)− tn(x)] = 0.

Following the hint, we will use the Lagrange form of the remainder. Note that in this
case f (k)(t) = 1

2k
et/2; since ex/2 is a positive and increasing function, it follows that if t is

between 0 and x, then et/2 ≤ e|x|/2 even if x is negative. This means that

0 ≤ |Rn(x)| =
∣∣∣∣f (n)(t)n!

xn
∣∣∣∣ =

∣∣∣∣∣ 1
2n e

t/2

n!
xn

∣∣∣∣∣ =
et/2

2nn!
|x|n ≤ e|x|/2

2nn!
|x|n .

Since lim
n→∞

e|x|/2

2nn!
|x|n = e|x|/2 lim

n→∞

|x|2

2nn!
= 0 (because n! outgrows any mere exponential), it

follows by the Squeeze Theorem that lim
n→∞

|Rn(x)| = 0, and hence also that lim
n→∞

Rn(x) =

0. As previously observed, this means that
∞∑
n=0

xn

2nn!
= f(x). Note that the particular

value of x did not matter . . . �
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