Mathematics 3790H - Analysis I: Introduction to analysis
 Trent University, Winter 2014

Assignment \#7
Due on Friday, 7 March, 2014.

1. Prove that the partial sums of $\sum_{n=0}^{\infty} \sin (n)$ are bounded. [5]
2. Use the result stated in $\mathbf{1}$ to help show that $\sum_{n=2}^{\infty} \frac{\sin (n)}{\ln (n)}$ converges. [1]
3. Suppose m is any real number and x is a real variable. Then the binomial series for m is

$$
\begin{aligned}
& 1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots \\
= & 1+\sum_{k=1}^{\infty} \frac{m(m-1) \cdots(m-k+1)}{k!} x^{k} .
\end{aligned}
$$

Show that if $|x|<1$, then the binomial series converges for all $m \in \mathbb{R}$. [4]
Note: The binomial series for m is the Taylor series at 0 of $f(x)=(1+x)^{m}$.

