
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Winter 2012

Solutions to Assignment #7
Find the limit!

1. Suppose we define a sequence an as follows: a0 =
1

2
and an+1 =

1

1 + an
for n ≥ 0.

Show that this sequence converges and find its limit. [10]

Note: To save the empirically inclined a little effort, here are the first few elements of the
sequence [corrected!]:

n an decimal

0 1
2 0.5

1 1
1+ 1

2

= 2
3 0.66666666666666 . . .

2 1
1+ 2

3

= 3
5 0.6

3 1
1+ 3

5

= 5
8 0.625

4 1
1+ 5

8

= 8
13 0.61538461538461 . . .

5 1
1+ 8

13

= 13
21 0.61904761904761 . . .

6 1
1+ 13

21

= 21
34 0.61764705882352 . . .

...
...

...

Solution. Suppose lim
n→∞

an exists and = α for some number α. Then

α = lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

1

1 + an
=

1

1 + limn→∞ an
=

1

1 + α
,

so α satisfies the equation α(1 + α) = 1, i.e. α2 + α − 1 = 0. Applying the quadratic

equation we get that α =
−1±

√
12 − 4 · 1 · (−1)

2 · 1
=
−1±

√
5

2
; that is, α is one of

−1 +
√

5

2

or
−1−

√
5

2
. Since the sequence is composed entirely of non-negative terms, it follows that

α =
−1 +

√
5

2
= 0.6180339887 . . . .

It remains to show that the sequence does, in fact, converge. We will do this by
finding convergent subsequences and verifying that the sequence has the same limit as
the subsequences. Our subsequences will be a2k, k ≥ 0, and a2k+1, k ≥ 0; we will show
these converge by checking that it they are, respectively, an increasing sequence which is
bounded above by α and a decreasing sequence which is bounded below by α. We will
proceed by induction on k ≥ 0:

Base step: (k = 0 & k = 2) a0 = 1
2 < a2 = 3

5 < α < a3 = 5
8 < a1 = 2

3 .

Inductive hypothesis: Assume that a0 < a2 < · · · < a2k < α < a2k+1 < · · · < a3 < a1.
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Inductive step: By definition,

a2(k+1) = a2k+2 =
1

1 + a2k+1
=

1

1 + 1
1+a2k

and a2(k+1)+1 = a2k+3 =
1

1 + a2k+2
=

1

1 + 1
1+a2k+1

.

Since a2k−2 < a2k < α < a2k+1 < a2k−1,

1 + a2k−2 < 1 + a2k < 1 + α < 1 + a2k+1 < 1 + a2k−1 .

It follows that

1

1 + a2k−2
>

1

1 + a2k
>

1

1 + α
= α >

1

1 + a2k+1
>

1

1 + a2k−1
,

so

1 +
1

1 + a2k−2
> 1 +

1

1 + a2k
> 1 + α > 1 +

1

1 + a2k+1
> 1 +

1

1 + a2k−1
,

and thus

1

1 + 1
1+a2k−2

<
1

1 + 1
1+a2k

<
1

1 + α
<

1

1 + 1
1+a2k+1

<
1

1 + 1
1+a2k−1

‖ ‖ ‖ ‖ ‖
a2k a2k+2 α a2k+3 a2k+1

It follows by induction that a0 < a2 < · · · < a2k < α < a2k+1 < · · · < a3 < a1 for all
k ≥ 0.

By the Monotone Convergence Theorem it now follows that lim
k→∞

a2k and lim
k→∞

a2k+1

exist and that lim
k→∞

a2k = β ≤ α ≤ γ = lim
k→∞

a2k+1. Note that

β = lim
k→∞

a2k = lim
k→∞

1

1 + a2k−1
=

1

1 + γ

and γ = lim
k→∞

a2k+1 = lim
k→∞

1

1 + a2k
=

1

1 + β
,

so β =
1

1 + γ
=

1

1 + 1
1+β

=
1

2+β
1+β

=
1 + β

2 + β
. Thus 1 + β = β(2 + β) = 2β + β2, so

β2 + β − 1 = 0. This is the same equation satisfied by α; just as for α, since we are
dealing with a limit of non-negative terms, it follows that β is the positive root, i.e.

β =
−1 +

√
5

2
= α. A similar argument shows that γ = α too. Since both subsequences

have the same limit, and they make up the entire sequence between them, the sequence
must have the same limit.

Thus lim
n→∞

an exists and =
−1 +

√
5

2
. �

Note: The limit of this sequence is 1− ϕ = 1/ϕ, where ϕ is the “golden ratio”.
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