Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2012

Solutions to Assignment \#6

More p-tests

1. Determine for which p the series $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$ converges and for which it diverges. [4] Solution. $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$ converges when $p>1$, but does not converge when $p \leq 1$, just as in the regular p-Test.

Note that $\frac{\ln (n)}{n^{p}}>\frac{1}{n^{p}}>0$ for $n \geq 3$ since $\ln (n)>1$ once $n \geq 3>e$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges if $p \leq 1$, by the p-Test, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$ diverges if $p \leq 1$.

On the other hand, suppose $p>1$. Then we can write $p=q+r$, where $q>1$ and $r>0$. (For example, one could take $r=(p-1) / 2$ and $q=(p+1) / 2$.) Then $\frac{\ln (n)}{n^{p}}=\frac{\ln (n)}{n^{r}} \cdot \frac{1}{n^{q}}$. Since

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n^{r}} & =\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{r}} \rightarrow \infty \\
& =\lim _{x \rightarrow \infty} \frac{1 / n}{r n^{r-1}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln (x)}{\frac{d}{d x} x^{r}} \quad \text { (by l'Hôpital's Rule) } \\
r n^{r-1} n & \lim _{x \rightarrow \infty} \frac{1}{r n^{r}} \rightarrow 1=0
\end{aligned}
$$

there is some N such that $\frac{\ln (n)}{n^{r}}=\left|\frac{\ln (n)}{n^{r}}-0\right|<1$ for all $n \geq N$. Then for all $n \geq N$ we have $\frac{\ln (n)}{n^{p}}=\frac{\ln (n)}{n^{r}} \cdot \frac{1}{n^{q}}<\frac{1}{n^{q}} . \sum_{n=1}^{\infty} \frac{1}{n^{q}}$ converges by the p-Test since $q>1$, and so it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$ converges as well.
2. Determine for which p the series $\sum_{n=1}^{\infty} \frac{\ln \left(n^{p}\right)}{n^{p}}$ converges and for which it diverges. [2]

Solution. Trick question! $\sum_{n=1}^{\infty} \frac{\ln \left(n^{p}\right)}{n^{p}}=\sum_{n=1}^{\infty} \frac{p \ln (n)}{n^{p}}=p \sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$, so, by 1, it converges when $p>1$ and diverges when $p \leq 1$, except for the special case $p=0$, for which the series converges. (Why?)
3. Determine for which p the series $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{p}}{n^{p}}$ converges and for which it diverges. [4] Solution. Just like the series in $\mathbf{1}, \sum_{n=1}^{\infty} \frac{[\ln (n)]^{p}}{n^{p}}$ converges when $p>1$ and diverges when $p \leq 1$. In fact, we can verify this using methods similar to those used in the solution to $\mathbf{1}$. First, if $0 \leq p \leq 1$, then $\frac{[\ln (n)]^{p}}{n^{p}} \geq \frac{1}{n^{p}}>0$ for $n \geq 3$ since $\ln (n)>1$ once $n \geq 3>e$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ diverges if $p \leq 1$, by the p-Test, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln (n)}{n^{p}}$ diverges if $0 \leq p \leq 1$.

Second, if $p<0$, then $\frac{[\ln (n)]^{p}}{n^{p}}=\left(\frac{\ln (n)}{n}\right)^{p}=\left(\frac{n}{\ln (n)}\right)^{|p|}$, where $|p|>0$. Note that $\lim _{n \rightarrow \infty} \frac{[\ln (n)]^{p}}{n^{p}}=\lim _{n \rightarrow \infty}\left(\frac{n}{\ln (n)}\right)^{|p|}=\left(\lim _{n \rightarrow \infty} \frac{n}{\ln (n)}\right)^{|p|}=\infty$, since
$\lim _{n \rightarrow \infty} \frac{n}{\ln (n)}=\lim _{x \rightarrow \infty} \frac{x}{\ln (x)} \rightarrow \infty=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x} x}{\frac{d}{d x} \ln (x)}=\lim _{x \rightarrow \infty} \frac{1}{1 / x}=\lim _{x \rightarrow \infty} x=\infty$. It then follows that $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{p}}{n^{p}}$ does not converge by the Divergence Test.

Third, suppose $p>1$. As in the solution to $\mathbf{1}$, write $p=q+r$, where $q>1$ and $r>0$ (e.g. $r=(p-1) / 2$ and $q=(p+1) / 2)$. Then $\frac{[\ln (n)]^{p}}{n^{p}}=\frac{[\ln (n)]^{p}}{n^{r}} \cdot \frac{1}{n^{q}}$. Note that

$$
\lim _{n \rightarrow \infty} \frac{[\ln (n)]^{p}}{n^{r}}=\lim _{n \rightarrow \infty}\left(\frac{\ln (n)}{n^{r / p}}\right)^{p}=\left(\lim _{n \rightarrow \infty} \frac{\ln (n)}{n^{r / p}}\right)^{p}=\left(\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{r / p}}\right)^{p}=0^{p}=0
$$

because it follows from the fact that $r / p>0$ that

$$
\lim _{x \rightarrow \infty} \frac{\ln (x)}{x^{r / p} \rightarrow \infty} \rightarrow \lim _{x \rightarrow \infty} \frac{\frac{d}{d x} \ln (x)}{\frac{d}{d x} x^{r / p}}=\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{r}{p} x^{r / p-1}}=\lim _{x \rightarrow \infty} \frac{1}{\frac{r}{p} x^{r / p}} \rightarrow \infty=0
$$

with just a little bit of help from l'Hôpital's Rule again. Thus there is some N such that $\frac{[\ln (n)]^{p}}{n^{r}}=\left|\frac{[\ln (n)]^{p}}{n^{r}}-0\right|<1$ for all $n \geq N$. Then for all $n \geq N$ we have $\frac{\ln (n)}{n^{p}}=$ $\frac{[\ln (n)]^{p}}{n^{r}} \cdot \frac{1}{n^{q}}<\frac{1}{n^{q}} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{q}}$ converges by the p-Test since $q>1$, and so it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{[\ln (n)]^{p}}{n^{p}}$ converges as well.

