Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2012

Solutions to Assignment #6 More *p*-tests

1. Determine for which p the series $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$ converges and for which it diverges. [4]

SOLUTION. $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$ converges when p > 1, but does not converge when $p \le 1$, just as in the regular *p*-Test.

Note that $\frac{\ln(n)}{n^p} > \frac{1}{n^p} > 0$ for $n \ge 3$ since $\ln(n) > 1$ once $n \ge 3 > e$. Since $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges if $p \le 1$, by the *p*-Test, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$ diverges

if $p \leq 1$.

On the other hand, suppose p > 1. Then we can write p = q + r, where q > 1 and r > 0. (For example, one could take r = (p-1)/2 and q = (p+1)/2.) Then $\frac{\ln(n)}{n^p} = \frac{\ln(n)}{n^r} \cdot \frac{1}{n^q}$. Since

$$\lim_{n \to \infty} \frac{\ln(n)}{n^r} = \lim_{x \to \infty} \frac{\ln(x)}{x^r} \xrightarrow{\to \infty} = \lim_{x \to \infty} \frac{\frac{d}{dx}\ln(x)}{\frac{d}{dx}x^r} \quad (by \ l'Hôpital's \ Rule)$$
$$= \lim_{x \to \infty} \frac{1/n}{rn^{r-1}} = \lim_{x \to \infty} \frac{1}{rn^{r-1}n} = \lim_{x \to \infty} \frac{1}{rn^r} \xrightarrow{\to 1} = 0,$$

there is some N such that $\frac{\ln(n)}{n^r} = \left|\frac{\ln(n)}{n^r} - 0\right| < 1$ for all $n \ge N$. Then for all $n \ge N$ we have $\frac{\ln(n)}{n^p} = \frac{\ln(n)}{n^r} \cdot \frac{1}{n^q} < \frac{1}{n^q}$. $\sum_{n=1}^{\infty} \frac{1}{n^q}$ converges by the *p*-Test since q > 1, and so it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$ converges as well.

2. Determine for which p the series $\sum_{n=1}^{\infty} \frac{\ln(n^p)}{n^p}$ converges and for which it diverges. [2]

SOLUTION. Trick question! $\sum_{n=1}^{\infty} \frac{\ln(n^p)}{n^p} = \sum_{n=1}^{\infty} \frac{p \ln(n)}{n^p} = p \sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$, so, by **1**, it converges when p > 1 and diverges when $p \le 1$, except for the special case p = 0, for which the series converges. (Why?)

3. Determine for which p the series $\sum_{n=1}^{\infty} \frac{[\ln(n)]^p}{n^p}$ converges and for which it diverges. [4]

SOLUTION. Just like the series in 1, $\sum_{n=1}^{\infty} \frac{[\ln(n)]^p}{n^p} \text{ converges when } p > 1 \text{ and diverges when } p > 1 \text{ and diverges when } p \le 1.$ In fact, we can verify this using methods similar to those used in the solution to 1. First, if $0 \le p \le 1$, then $\frac{[\ln(n)]^p}{n^p} \ge \frac{1}{n^p} > 0$ for $n \ge 3$ since $\ln(n) > 1$ once $n \ge 3 > e$. Since $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges if $p \le 1$, by the *p*-Test, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\ln(n)}{n^p}$ diverges if $0 \le p \le 1$. Second, if p < 0, then $\frac{[\ln(n)]^p}{n^p} = \left(\frac{\ln(n)}{n}\right)^p = \left(\frac{n}{\ln(n)}\right)^{|p|}$, where |p| > 0. Note that $\lim_{n\to\infty} \frac{[\ln(n)]^p}{n^p} = \lim_{n\to\infty} \left(\frac{n}{\ln(n)}\right)^{|p|} = \left(\lim_{n\to\infty} \frac{n}{\ln(n)}\right)^{|p|} = \infty$, since $\lim_{n\to\infty} \frac{n}{\ln(n)} = \lim_{n\to\infty} \frac{x}{\ln(x)} \xrightarrow{\infty} = \lim_{x\to\infty} \frac{\frac{d}{dx}x}{dx} = \lim_{x\to\infty} \frac{1}{1/x} = \lim_{x\to\infty} x = \infty$. It then follows that $\sum_{n=1}^{\infty} \frac{[\ln(n)]^p}{n^p}$ does not converge by the Divergence Test. Third, suppose p > 1. As in the solution to 1, write p = q + r, where q > 1 and r > 0 (e.g. r = (p-1)/2 and q = (p+1)/2). Then $\frac{[\ln(n)]^p}{n^{p'}} = \left(\lim_{x\to\infty} \frac{\ln(x)}{x^{r/p}}\right)^p = 0^p = 0$,

because it follows from the fact that r/p > 0 that

$$\lim_{x \to \infty} \frac{\ln(x)}{x^{r/p}} \xrightarrow{\infty} = \lim_{x \to \infty} \frac{\frac{d}{dx} \ln(x)}{\frac{d}{dx} x^{r/p}} = \lim_{x \to \infty} \frac{1/x}{\frac{r}{p} x^{r/p-1}} = \lim_{x \to \infty} \frac{1}{\frac{r}{p} x^{r/p}} \xrightarrow{\to} \frac{1}{p} = 0$$

with just a little bit of help from l'Hôpital's Rule again. Thus there is some N such that $\frac{[\ln(n)]^p}{n^r} = \left| \frac{[\ln(n)]^p}{n^r} - 0 \right| < 1$ for all $n \ge N$. Then for all $n \ge N$ we have $\frac{\ln(n)}{n^p} = \frac{[\ln(n)]^p}{n^r} \cdot \frac{1}{n^q} < \frac{1}{n^q}$. $\sum_{n=1}^{\infty} \frac{1}{n^q}$ converges by the *p*-Test since q > 1, and so it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{[\ln(n)]^p}{n^p}$ converges as well.