Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Winter 2012

Solutions to Assignment #6
More p-tests
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1. Determine for which p the series E L:L) converges and for which it diverges. [4/
n
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SOLUTION. Z Converges when p > 1, but does not converge when p < 1, just as in
the regular p—Test

In(n) 1 , =1

Notethat—>—>0forn23smceln( ) > 1oncen >3 >e. Since —

npP nPp nP

n=1

o0
1
diverges if p < 1, by the p-Test, it follows by the Comparison Test that E L;L) diverges
n

if p<1.
On the other hand, suppose p > 1. Then we can write p = ¢+r, where ¢ > 1 and r > 0.
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(For example, one could take r = (p —1)/2 and ¢ = (p + 1)/2.) Then % = Intn) 1
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there is some NN such that n(n) = n(n) — O’ < 1lforalln > N. Then for alln > N
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we have n(n) = n(n) — < — Z — converges by the p-Test since ¢ > 1, and so it
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follows by the Comparison Test that E L;l)
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converges as well. H
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2. Determine for which p the series Z o e converges and for which it diverges. [2]
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SOLUTION. Trick question! Z (
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Z M so, by 1, it converges
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when p > 1 and diverges when p < 1, except for the spemal case p = 0, for which the series

converges. (Why?) W
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3. Determine for which p the series Z %
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converges and for which it diverges. [4/
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SOLUTION. Just like the series in 1, E [n(—z converges when p > 1 and diverges when
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p < 1. In fact, we can verify this using methods similar to those used in the solution to 1.
In(n)|? 1
First,ifogpgl,then#Z—p>0f0rn238inceln(n)>10ncen23>e.
n n

o0
1
Since E - diverges if p < 1, by the p-Test, it follows by the Comparison Test that
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Second, if p < 0, then [n(z)] = n(n)) = ( n > , where |p| > 0. Note that
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diverges if 0 < p < 1.
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that Z @ does not converge by the Divergence Test.
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Tﬁird, suppose p > 1. As in the solution to 1, write p = g+ r, where ¢ > 1 and r > 0
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(e.gg r=(p—1)/2and g = (p+1)/2). Then = vt Note that
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because it follows from the fact that r/p > 0 that
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with just a little bit of help from I’'Hopital’s Rule again. Thus there is some N such
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