Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2012

Solution to Assignment #5 Squeezing more out of the Integral Test

Recall that we showed that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverged by interpreting the series as a sum of areas and comparing it to the area under the graph of $f(x) = \frac{1}{x}$.

1. Use a rea-comparison arguments to show that $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$ converges to some number between $\frac{\pi}{4}$ and $\frac{\pi}{2}$. [10]

SOLUTION. Recall what the graph of $y = \frac{1}{1+x^2}$ looks like:

Of course, we'll only need the part where $x \ge 0 \dots$:-)

To see that $\sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \dots$ is less than $\frac{\pi}{2}$, consider the areas of the rectangles with base [n-1,n] and height $\frac{1}{1+n^2}$ for $n \ge 1$. These fit beneath the curve $y = \frac{1}{1+x^2}$ for $0 \le x < \infty$

and so their collective area, $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$, is less than the area under the curve on $[0,\infty)$. This is given by

$$\int_0^\infty \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_0^t \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan(x) \Big|_0^t$$
$$= \lim_{t \to \infty} \left(\arctan(t) - \arctan(0)\right) = \lim_{t \to \infty} \arctan(t) = \frac{\pi}{2}$$

since $\arctan(0) = 0$. Thus $\sum_{n=1}^{\infty} \frac{1}{1+n^2} < \frac{\pi}{2}$.

To see that $\sum_{n=1}^{\infty} \frac{1}{1+n^2} = \frac{1}{2} + \frac{1}{5} + \frac{1}{10} + \frac{1}{17} + \dots$ is greater than $\frac{\pi}{4}$, consider the areas

of the rectangles with base [n, n+1] and height $\frac{1}{1+n^2}$ for $n \ge 1$. These enclose all the area beneath the curve $y = \frac{1}{1+x^2}$ for $1 \le x < \infty$

and so their collective area, which is also $\sum_{n=1}^{\infty} \frac{1}{1+n^2}$, is greater than the area under the curve on $[1, \infty)$. This is given by

$$\int_{1}^{\infty} \frac{1}{1+x^2} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{1+x^2} dx = \lim_{t \to \infty} \arctan(x) \Big|_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\arctan(t) - \arctan(1)\right) = \lim_{t \to \infty} \arctan(t) - \frac{\pi}{4} = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

since $\arctan(1) = \frac{\pi}{4}$. Thus $\sum_{n=1}^{\infty} \frac{1}{1+n^2} > \frac{\pi}{4}$ as well.