Mathematics 3790H - Analysis I: Introduction to analysis

Trent University, Winter 2012
Solution to Assignment \#5 Squeezing more out of the Integral Test

Recall that we showed that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverged by interpreting the series as a sum of areas and comparing it to the area under the graph of $f(x)=\frac{1}{x}$.

1. Use area-comparison arguments to show that $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$ converges to some number between $\frac{\pi}{4}$ and $\frac{\pi}{2}$. [10]

Solution. Recall what the graph of $y=\frac{1}{1+x^{2}}$ looks like:

Of course, we'll only need the part where $x \geq 0 \ldots$:-)
To see that $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\ldots$ is less than $\frac{\pi}{2}$, consider the areas of the rectangles with base $[n-1, n]$ and height $\frac{1}{1+n^{2}}$ for $n \geq 1$. These fit beneath the curve $y=\frac{1}{1+x^{2}}$ for $0 \leq x<\infty$

and so their collective area, $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$, is less than the area under the curve on $[0, \infty)$. This is given by

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{1}{1+x^{2}} d x=\left.\lim _{t \rightarrow \infty} \arctan (x)\right|_{0} ^{t} \\
& =\lim _{t \rightarrow \infty}(\arctan (t)-\arctan (0))=\lim _{t \rightarrow \infty} \arctan (t)=\frac{\pi}{2}
\end{aligned}
$$

since $\arctan (0)=0$. Thus $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}<\frac{\pi}{2}$.
To see that $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}=\frac{1}{2}+\frac{1}{5}+\frac{1}{10}+\frac{1}{17}+\ldots$ is greater than $\frac{\pi}{4}$, consider the areas of the rectangles with base $[n, n+1]$ and height $\frac{1}{1+n^{2}}$ for $n \geq 1$. These enclose all the area beneath the curve $y=\frac{1}{1+x^{2}}$ for $1 \leq x<\infty$

and so their collective area, which is also $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$, is greater than the area under the curve on $[1, \infty)$. This is given by

$$
\begin{aligned}
\int_{1}^{\infty} \frac{1}{1+x^{2}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{1+x^{2}} d x=\left.\lim _{t \rightarrow \infty} \arctan (x)\right|_{1} ^{t} \\
& =\lim _{t \rightarrow \infty}(\arctan (t)-\arctan (1))=\lim _{t \rightarrow \infty} \arctan (t)-\frac{\pi}{4}=\frac{\pi}{2}-\frac{\pi}{4}=\frac{\pi}{4}
\end{aligned}
$$

since $\arctan (1)=\frac{\pi}{4}$. Thus $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}>\frac{\pi}{4}$ as well.

