Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Winter 2012

Solution to Assignment #35
Squeezing more out of the Integral Test
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Recall that we showed that E — diverged by interpreting the series as a sum of areas
n

n=1
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and comparing it to the area under the graph of f(z) = —.
x
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1. Use area-comparison arguments to show that Z 5 converges to some number
= 1+n
between — and —. [10]
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SOLUTION. Recall what the graph of y = looks like:
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Of course, we’ll only need the part where x >0 ... :-)
To see that i 1 = 1 + 1 + i + i + is less than T consider the areas
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and so their collective area, Z T2
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el is less than the area under the curve on [0, c0).
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This is given by
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/0 2 dx = tlg]élo 15 dx = tlggo arctan(z)|,

: , T
= tlggo (arctan(t) — arctan(0)) = tli)rgo arctan(t) = 5
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since arctan(0) = 0. Thus;l—l—nz <g.
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and so their collective area, which is also Z ] is greater than the area under the
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curve on [1,00). This is given by
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since arctan(1) = —. Thus g 5
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