Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Winter 2012

Solution to Assignment #4
Series business at last!
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1. Show that the alternating harmonic series Z (
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converges without using the

Alternating Series Test. [5]

SOLUTION. We carefully regroup the series:
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Since for £ > 1 we have < the regrouped series converges by
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comparison with Z 72 which it’s easy to show converges (the p-Test or the Integral Test
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will do the job, for example). B
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2. Suppose a, is a non-increasing sequence of positive terms such that Z 2" aon con-
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verges. Show that Z an also converges. [5]
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SOLUTION. Suppose a,, is a non-increasing sequence of positive terms such that Z 2" agn
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converges. We carefully regroup the original series:
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The original sequence is positive and non-increasing, i.e. 0 < a,, < aj whenever
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converges, it follows by the Comparison Test that Z an converges as well. H
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NoTE: Both of these can be done with the help of some (different!) rewriting trickery and
the Comparison Test.



