Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2012
 Solution to Assignment \#4
 Series business at last!

1. Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges without using the Alternating Series Test. [5]
Solution. We carefully regroup the series:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} & =\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\cdots+\frac{1}{2 k+1}-\frac{1}{2 k+2}-\ldots \\
& =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\cdots-\left(\frac{1}{2 k+1}-\frac{1}{2 k+2}\right)-\ldots \\
& =\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+\frac{1}{5 \cdot 6}+\cdots+\frac{1}{(2 k+1)(2 k+2)}+\cdots \\
& =\sum_{k=0}^{\infty} \frac{1}{(2 k+1)(2 k+2)}=\sum_{k=0}^{\infty} \frac{1}{4 k^{2}+6 k+2}
\end{aligned}
$$

Since for $k \geq 1$ we have $\frac{1}{4 k^{2}+6 k+2}<\frac{1}{4 k^{2}}<\frac{1}{k^{2}}$, the regrouped series converges by comparison with $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$, which it's easy to show converges (the p-Test or the Integral Test will do the job, for example).
2. Suppose a_{n} is a non-increasing sequence of positive terms such that $\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}$ converges. Show that $\sum_{n=0}^{\infty} a_{n}$ also converges. [5]
Solution. Suppose a_{n} is a non-increasing sequence of positive terms such that $\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}$ converges. We carefully regroup the original series:

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n} & =a_{0}+a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}+a_{9}+\ldots \\
& =a_{0}+\left(a_{1}\right)+\left(a_{2}+a_{3}\right)+\left(a_{4}+a_{5}+a_{6}+a_{7}\right)+\left(a_{8}+a_{9}+\ldots\right. \\
& =a_{0}+\sum_{k=0}^{\infty}\left(a_{2^{k}}+a_{2^{k}+1}+\cdots+a_{2^{k+1}-1}\right)
\end{aligned}
$$

The original sequence is positive and non-increasing, i.e. $0<a_{m} \leq a_{k}$ whenever $m>k$, so $0<a_{2^{k}}+a_{2^{k}+1}+\cdots+a_{2^{k+1}-1} \leq a_{2^{k}}+a_{2^{k}}+\cdots+a_{2^{k}}=2^{k} a_{2^{k}}$. Since $\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}$ converges, it follows by the Comparison Test that $\sum_{n=0}^{\infty} a_{n}$ converges as well.

Note: Both of these can be done with the help of some (different!) rewriting trickery and the Comparison Test.

