Mathematics 3790H - Analysis I: Introduction to analysis Trent University, Winter 2012

Solution to Assignment \#3

1. Give an example of a sequence a_{n} which satisfies the condition

For all $\varepsilon>0$ there is a N such that for all $n \geq N,\left|a_{n}-a_{n+1}\right|<\varepsilon$. but which does not converge. [10]

Hint: Compare the given condition to the Cauchy Convergence Criterion for sequences ($\$ 2.12$ in the text). They're almost the same ...

Solution. Let $a_{n}=\sum_{k=1}^{n} \frac{1}{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$. Then a_{n} does not converge (this was done in class, and it is Example 2.12 in the text), but it does satisfy the given condition:

Suppose $\varepsilon>0$ is given. Choose any integer $N \geq \frac{1}{\varepsilon}$. Then if $n \geq N$, we have

$$
\left|a_{n}-a_{n+1}\right|=\left|\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\left(\sum_{k=1}^{n+1} \frac{1}{k}\right)\right|=\left|\frac{-1}{n+1}\right|=\frac{1}{n+1}<\frac{1}{n} \leq \frac{1}{N} \leq \varepsilon
$$

as desired.

