Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Winter 2012

Solution to Assignment #2
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1. Show that if lim a, = L and hm b, = M # 0, then lim Z— = [10]
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HinT: This is easier if you first show that if lim b, = M # 0, then lim — = —.
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SOLUTION. Following the hint, we first try to show that if lim b, = M # 0, then
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im — = —.
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Suppose € > 0 is given. We need to find an N such that if n > N, then b M
Note that L _ M b i M/2| < |ba| < 130M/2|
. T I, n n .
e. Note tha b I M, M MJ2 as long as
(Larger denominator, smaller fraction ... ) Since hm b, = M # 0, there is some N;

such that whenever n > Nj, we have |b, — M| < M / 2, which amounts to saying that
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|M /2| < |b,| < |3M/2|. For n > Ny, therefore, E M‘ ‘M M/2 = |b, — M| - e
Again, since lim b, = M # 0, there is some Ny such that whenever n > Ns, we have
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b, — M| < &+ M?/2. 1t follows that when n > N = max { Ny, No} we have
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as desired. Thus if lim b, = M # 0, then lim — = —.
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Now suppose hm a, = L and lim b, = - M # 0. Then, using the limit law for
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products,

lim dn _ lim an-bi:(lim an>-<lim i):L- L =

L
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as desired. H



