Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2012

Solution to Assignment \#2

1. Show that if $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{L}{M}$. [10]

Hint: This is easier if you first show that if $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.
Solution. Following the hint, we first try to show that if $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.

Suppose $\varepsilon>0$ is given. We need to find an N such that if $n \geq N$, then $\left|\frac{1}{b_{n}}-\frac{1}{M}\right|<$ ع. Note that $\left|\frac{1}{b_{n}}-\frac{1}{M}\right|=\left|\frac{M-b_{n}}{M b_{n}}\right|<\left|\frac{M-b_{n}}{M \cdot M / 2}\right|$ as long as $|M / 2|<\left|b_{n}\right|<|3 M / 2|$. (Larger denominator, smaller fraction ...) Since $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, there is some N_{1} such that whenever $n \geq N_{1}$, we have $\left|b_{n}-M\right|<M / 2$, which amounts to saying that $|M / 2|<\left|b_{n}\right|<|3 M / 2|$. For $n \geq N_{1}$, therefore, $\left|\frac{1}{b_{n}}-\frac{1}{M}\right|<\left|\frac{M-b_{n}}{M \cdot M / 2}\right|=\left|b_{n}-M\right| \cdot \frac{2}{M^{2}}$. Again, since $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, there is some N_{2} such that whenever $n \geq N_{2}$, we have $\left|b_{n}-M\right|<\varepsilon \cdot M^{2} / 2$. It follows that when $n \geq N=\max \left\{N_{1}, N_{2}\right\}$ we have

$$
\left|\frac{1}{b_{n}}-\frac{1}{M}\right|<\left|b_{n}-M\right| \cdot \frac{2}{M^{2}}<\varepsilon \cdot \frac{M^{2}}{2} \cdot \frac{2}{M^{2}}=\varepsilon,
$$

as desired. Thus if $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$, then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}}=\frac{1}{M}$.
Now suppose $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M \neq 0$. Then, using the limit law for products,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} a_{n} \cdot \frac{1}{b_{n}}=\left(\lim _{n \rightarrow \infty} a_{n}\right) \cdot\left(\lim _{n \rightarrow \infty} \frac{1}{b_{n}}\right)=L \cdot \frac{1}{M}=\frac{L}{M},
$$

as desired.

