Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2012

Quizzes

- Quiz #1. Monday, 16 Thursday, 19 January, 2012. [10 minutes]
- **1.** Suppose $X \subset \mathbb{R}$ has $\sup(X) = \operatorname{lub}(X) = a$. Show that if $Y = \{-x \mid x \in X\}$, then $\inf(Y) = \operatorname{glb}(Y) = -a$. [5]
- Quiz #2. Monday, 23 Wednesday, 25 January, 2012. [10 minutes]
- 1. Suppose you are given that $\lim_{n \to \infty} \frac{1}{n} = 0$. Use this fact, plus some algebra and the limit laws for sequences, to compute $\lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n + 2}$. [5]

Quiz #3. Monday, 30 January, 2012. [10 minutes]

1. If n is a positive integer, then the square-free part of n is $v(n) = \frac{n}{m^2}$, where m is the largest positive integer whose square divides n. Let $a_n = \frac{1}{v(n)}$ for $n \ge 1$. Find two subsequences of a_n which converge to different limits. [5]

Hint: The first thirty elements of the sequence are:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
v(n)															
a_n	1	$\frac{1}{2}$	$\frac{1}{3}$	1	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{2}$	1	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{3}$	$\frac{1}{13}$	$\frac{1}{14}$	$\frac{1}{15}$
n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
v(n)	1	17	2	19	5	21	22	23	6	1	26	3	28	29	30
a_n	1	$\frac{1}{17}$	$\frac{1}{2}$	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{21}$	$\frac{1}{22}$	$\frac{1}{22}$	$\frac{1}{6}$	1	$\frac{1}{26}$	$\frac{1}{2}$	$\frac{1}{7}$	$\frac{1}{20}$	$\frac{1}{20}$

Quiz #4. Monday, 6 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n}{n^2 - n + 1}$ converges or not. [5]

Quiz #5. Monday, 13 February, 2012. [10 minutes]

1. Determine whether
$$\sum_{n=0}^{\infty} \frac{n^2 + n}{3^n}$$
 converges or not. [5]

Quiz #6. Monday, 27 February, 2012. [10 minutes]

1. Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdots \left(\frac{1}{2} - n + 1\right)}{n!} x^n \,. \quad [5]$$

Quiz #7. Monday, 5 March, 2012. [10 minutes]

1. Verify that the sequence of functions $f_n(x) = e^{-nx}$ converges uniformly to the function f(x) = 0 on the interval [1, 2]. [5]

Quiz #8. Monday, 12 March, 2012. [15 minutes]

1. Give an example of a sequence of continuous functions $f_n(x)$ defined on a closed interval [a, b] such that $c_n = \int_a^b f_n(x) dx$ converges to some real number c, but $f_n(x)$ does not converge uniformly on [a, b]. [5]

Quiz #9. Monday, 19 March, 2012. [10 minutes]

- 1. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}.$ [2]
- **2.** Assuming that $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ when the series converges, find a power series equal to $\cos(x)$. [3]

Quiz #10. Monday, 26 March, 2012. [15 minutes]

1. Find the Taylor series at 0 of $f(x) = \frac{1}{1 - 7x}$ and determine its interval of convergence. [5]

Quiz #11. Monday, 2 April, 2012. [15 minutes]

Recall that the Taylor series at 0 of $f(x) = \ln(1+x)$ is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n$ and has radius of convergence r = 1.

1. What does k need to be to ensure that
$$\sum_{n=1}^{k} \frac{(-1)^{n+1}}{n} \left(-\frac{1}{2}\right)^n \text{ is within } \frac{1}{32} \text{ of } \ln\left(\frac{1}{2}\right) = \ln\left(1-\frac{1}{2}\right)?$$
 [5]

Hint: Use the Lagrange form of the remainder.