Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2012

 Quizzes

 Quizzes}

Quiz \#1. Monday, 16 Thursday, 19 January, 2012. [10 minutes]

1. Suppose $X \subset \mathbb{R}$ has $\sup (X)=\operatorname{lub}(X)=a$. Show that if $Y=\{-x \mid x \in X\}$, then $\inf (Y)=\operatorname{glb}(Y)=-a .[5]$
Quiz \#2. Monday, 23 Wednesday, 25 January, 2012. [10 minutes]
2. Suppose you are given that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Use this fact, plus some algebra and the limit laws for sequences, to compute $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n+2}$. 5$]$
Quiz \#3. Monday, 30 January, 2012. [10 minutes]
3. If n is a positive integer, then the square-free part of n is $v(n)=\frac{n}{m^{2}}$, where m is the largest positive integer whose square divides n. Let $a_{n}=\frac{1}{v(n)}$ for $n \geq 1$. Find two subsequences of a_{n} which converge to different limits. [5]
Hint: The first thirty elements of the sequence are:

$$
\begin{array}{cccccccccccccccc}
n & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
v(n) & 1 & 2 & 3 & 1 & 5 & 6 & 7 & 2 & 1 & 10 & 11 & 3 & 13 & 14 & 15 \\
a_{n} & 1 & \frac{1}{2} & \frac{1}{3} & 1 & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{2} & 1 & \frac{1}{10} & \frac{1}{11} & \frac{1}{3} & \frac{1}{13} & \frac{1}{14} & \frac{1}{15} \\
n & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 \\
v & 16 & 17 & 2 & 19 & 5 & 21 & 22 & 23 & 6 & 1 & 26 & 3 & 28 & 29 & 30 \\
a_{n} & 1 & 1 & \frac{1}{17} & \frac{1}{2} & \frac{1}{19} & \frac{1}{5} & \frac{1}{21} & \frac{1}{22} & \frac{1}{23} & \frac{1}{6} & 1 & \frac{1}{26} & \frac{1}{3} & \frac{1}{7} & \frac{1}{29} \\
\frac{1}{30}
\end{array}
$$

Quiz \#4. Monday, 6 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n}{n^{2}-n+1}$ converges or not. [5]

Quiz \#5. Monday, 13 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n^{2}+n}{3^{n}}$ converges or not. [5]

Quiz \#6. Monday, 27 February, 2012. [10 minutes]

1. Find the radius and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!} x^{n}
$$

Quiz \#7. Monday, 5 March, 2012. [10 minutes]

1. Verify that the sequence of functions $f_{n}(x)=e^{-n x}$ converges uniformly to the function $f(x)=0$ on the interval $[1,2]$. [5]
Quiz \#8. Monday, 12 March, 2012. [15 minutes]
2. Give an example of a sequence of continuous functions $f_{n}(x)$ defined on a closed interval $[a, b]$ such that $c_{n}=\int_{a}^{b} f_{n}(x) d x$ converges to some real number c, but $f_{n}(x)$ does not converge uniformly on $[a, b]$. [5]
Quiz \#9. Monday, 19 March, 2012. [10 minutes]
3. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$. [2]
4. Assuming that $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$ when the series converges, find a power series equal to $\cos (x)$. [3]
Quiz \#10. Monday, 26 March, 2012. [15 minutes]
5. Find the Taylor series at 0 of $f(x)=\frac{1}{1-7 x}$ and determine its interval of convergence. [5]
Quiz \#11. Monday, 2 April, 2012. [15 minutes]
Recall that the Taylor series at 0 of $f(x)=\ln (1+x)$ is $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^{n}$ and has radius of convergence $r=1$.
6. What does k need to be to ensure that $\sum_{n=1}^{k} \frac{(-1)^{n+1}}{n}\left(-\frac{1}{2}\right)^{n}$ is within $\frac{1}{32}$ of $\ln \left(\frac{1}{2}\right)=$ $\ln \left(1-\frac{1}{2}\right) ?[5]$
Hint: Use the Lagrange form of the remainder.
