
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Winter 2012

Quiz Solutions

Quiz #1. Monday, 16 Thursday, 19 January, 2012. [10 minutes]

1. Suppose X ⊂ R has sup(X) = lub(X) = a. Show that if Y = {−x | x ∈ X }, then
inf(Y ) = glb(Y ) = −a. [5]

Solution. First, we check that −a is indeed a lower bound for Y :

If y ∈ Y , then, by the definition of Y , y = −x for some x ∈ X. Since a is an
upper bound for X, a ≥ x, so −a ≤ −x = y. Since this argument works for every
y ∈ Y , it follows that −a is a lower bound for Y .

Second, we check that −a is also the greatest lower bound for Y :

Suppose e is any lower bound for Y , i.e. e ≤ y for all y ∈ Y . Since Y =
{−x | x ∈ X }, it follows that e ≤ −x for all x ∈ X, from which it follows that
−e ≥ x for all x ∈ X. This means that −e is an upper bound for X, so −e ≥ a,
because a is the least upper bound of X. But then e ≤ −a. Thus −a is the
greatest lower bound of Y .

That’s all, folks! �

Quiz #2. Monday, 23 January, 2012. [10 minutes]

1. Suppose you are given that lim
n→∞

1

n
= 0. Use this fact, plus some algebra and the limit

laws for sequences, to compute lim
n→∞

n2 + 2n+ 1

n2 + 2n+ 2
.

Solution. Here goes. Algebra first,

lim
n→∞

n2 + 2n+ 1

n2 + 2n+ 2
= lim
n→∞

n2 + 2n+ 1

n2 + 2n+ 2
· 1/n2

1/n2
= lim
n→∞

n2

n2 + 2n
n2 + 1

n2

n2

n2 + 2n
n2 + 2

n2

= lim
n→∞

1 + 2
n + 1

n2

1 + 2
n + 2

n2

= lim
n→∞

1 + 2 · 1n +
(
1
n

)2
1 + 2 · 1n + 2 ·

(
1
n

)2
. . . and then the limit laws: =

lim
n→∞

[
1 + 2 · 1n +

(
1
n

)2]
lim
n→∞

[
1 + 2 · 1n + 2 ·

(
1
n

)2] [Quotient Law]

=

[
lim
n→∞

1
]

+
[

lim
n→∞

2 · 1n
]

+
[

lim
n→∞

(
1
n

)2][
lim
n→∞

1
]

+
[

lim
n→∞

2 · 1n
]

+
[

lim
n→∞

2 ·
(
1
n

)2] [Sum Law]

=

[
lim
n→∞

1
]

+ 2
[

lim
n→∞

1
n

]
+
[

lim
n→∞

1
n

]2
[

lim
n→∞

1
]

+ 2
[

lim
n→∞

1
n

]
+ 2

[
lim
n→∞

1
n

]2 [Constant &
Product Laws]

=
1 + 2 · 0 + 02

1 + 2 · 0 + 2 · 02
=

1

1
= 1 [Given fact] �
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Quiz #3. Monday, 30 January, 2012. [10 minutes]

1. If n is a positive integer, then the square-free part of n is υ(n) =
n

m2
, where m is the

largest positive integer whose square divides n. Let an =
1

υ(n)
for n ≥ 1. Find two

subsequences of an which converge to different limits. [5]

Hint: The first thirty elements of the sequence are:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
υ(n) 1 2 3 1 5 6 7 2 1 10 11 3 13 14 15
an 1 1

2
1
3 1 1

5
1
6

1
7

1
2 1 1

10
1
11

1
3

1
13

1
14

1
15

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
υ(n) 1 17 2 19 5 21 22 23 6 1 26 3 28 29 30
an 1 1

17
1
2

1
19

1
5

1
21

1
22

1
23

1
6 1 1

26
1
3

1
7

1
29

1
30

Solution. Note that since 1 ≤ υ(n) ≤ n for each n ≥ 1, we must always have 0 < an ≤ 1,
so yhe sequence is bounded, and hence must have a convergent subsequence.

Here is a recipe that will find infinitely many subsequences of an, each with a different
limit. For each integer t > 0 such that the largest m for which m2 divides t is 1, i.e. for
which υ(t) = t, consider the subsequence ank

(for k ≥ 1) of an given by ank
= atk2 =

1

υ (tk2)
. Since υ

(
tk2
)

= t, ank
=

1

t
for each k ≥ 1, so lim

k→∞
ank

= lim
k→∞

1

t
=

1

t
.

For example, t = 1 gives the subsequence a1 = 1, a4 = 1, a9 = 1, a16 = 1, . . . , while
t = 2 gives the subsequence a2 = 1

2 , a8 = 1
2 , a18 = 1

2 , a32 = 1
2 , . . .

There are also lots of ways of picking subsequences that have a limit of 0. For example,

if pn is the nth prime number, then apn =
1

pn
. This gives the subsequence a2 = 1

2 , a3 = 1
3 ,

a5 = 1
5 , a7 = 1

7 , a11 = 1
11 , a13 = 1

13 , a17 = 1
17 , . . . �

Quiz #4. Monday, 6 February, 2012. [10 minutes]

1. Determine whether
∞∑
n=0

n

n2 − n+ 1
converges or not. [5]

Solution. We will use the Limit Comparison Test to show that the given series diverges
because the Harmonic Series does so:

lim
n→∞

n
n2−n+1

1
n

= lim
n→∞

n

n2 − n+ 1
· n

1
= lim
n→∞

n2

n2 − n+ 1
= lim
n→∞

n2

n2 − n+ 1
· 1/n2

1/n2

= lim
n→∞

n2

n2

n2

n2 − n
n2 + 1

n2

= lim
n→∞

1

1− 1
n + 1

n2

=
1

1− 0 + 0
= 1

because
1

n
→ 0 and

1

n2
→ 0 as n→∞. Since 0 < 1 <∞ and

∞∑
n=1

1

n
does not converge, it

follows by the Limit Comparison Test that
∞∑
n=0

n

n2 − n+ 1
does not converge either. �
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Quiz #5. Monday, 13 February, 2012. [10 minutes]

1. Determine whether

∞∑
n=0

n2 + n

3n
converges or not. [5]

Solution. We will us the Ratio Test to show that the given series converges. Note that
all terms of this series are ≥ 0.

lim
n→∞

∣∣∣∣∣
(n+1)2+(n+1)

3n+1

n2+n
3n

∣∣∣∣∣ = lim
n→∞

(n+ 1)2 + (n+ 1)

n2 + n
· 3n

3n+1
= lim
n→∞

(n+ 1) ((n+ 1) + 1))

n(n+ 1)
· 1

3

=
1

3
lim
n→∞

n+ 2

n
=

1

3
lim
n→∞

(
n

n
+

2

n

)
=

1

3
lim
n→∞

(
1 +

2

n

)
=

1

3
(1 + 0) =

1

3
< 1

Since the limit gives a value less than 1, it follows by the Ratio Test that the given series
converges. �

Quiz #6. Monday, 27 February, 2012. [10 minutes]

1. Find the radius and interval of convergence of the power series

∞∑
n=1

1
2

(
1
2 − 1

) (
1
2 − 2

)
· · ·
(
1
2 − n+ 1

)
n!

xn . [5]

Solution. We will use the Ratio Test to find the radius of convergence.

lim
n→∞

∣∣∣∣∣∣
1
2 ( 1

2−1)(
1
2−2)···(

1
2−n+1)( 1

2−(n+1)−1)
(n+1)! xn+1

1
2 ( 1

2−1)(
1
2−2)···(

1
2−n+1)

n! xn

∣∣∣∣∣∣
= lim
n→∞

∣∣∣∣ 12 − nn+ 1
x

∣∣∣∣ = lim
n→∞

n− 1
2

n+ 1
|x| = 1 · |x| = |x|

It follows by the Ratio Test that the series converges absolutely when |x| < 1 and diverges
when |x| > 1, i.e. its radius of convergence is R = 1.

To find the interval of convergence we need to determine whether the series converges
or not at the endpoints, x = ±1. We will apply Gauss’ Test – check out the handout
about it! Observe that the absolute value of the ratio of coefficients in the computation

for the Ratio Test above came down to
n− 1

2

n+ 1
. The highest power of n appearing is 1 and

is the same in both the numerator and denominator, where it occurs with coefficient 1 in
both, so we need not work further to make them so. Looking at the coefficients of the next
lowest power of n, i.e. the constant terms, we observe that − 1

2 < 0 = 1− 1. It follows by
part 5 of Gauss’ Test that the series is absolutely convergent when x = ±R = ±1, i.e. it
converges at both endpoints. The interval of convergence of the given series is therefore
[−1, 1]. �

3



Quiz #7. Monday, 5 March, 2012. [10 minutes]

1. Verify that the sequence of functions fn(x) = e−nx converges uniformly to the function
f(x) = 0 on the interval [1, 2]. [5]

Solution. We need to check that for any ε > 0, there is an N such that if n ≥ N , then
|fn(x)− f(x)| = |e−nx − 0| < ε for all x ∈ [1, 2].

Suppose an ε > 0 is given. Then, recalling that e−t > 0 for all t,∣∣e−nx − 0
∣∣ < ε ⇐⇒ e−nx < ε .

Since e−t is a decreasing function, e−n = e−n1 ≥ e−nx for all x ∈ [1, 2]. Thus it will suffice
to ensure that e−n < ε. Note that

e−n < ε ⇐⇒ −n < ln(ε) ⇐⇒ n > −ln(ε) ⇐⇒ n > ln (1/ε) .

Let N > ln (1/ε). Then if n ≥ N > ln (1/ε), we have |e−nx − 0| = e−nx ≤ e−n < ε for all
x ∈ [1, 2].

Thus fn(x) = e−nx converges uniformly to f(x) = 0 on the interval [1, 2]. �

Quiz #8. Monday, 12 March, 2012. [15 minutes]

1. Give an example of a sequence of continuous functions fn(x) defined on a closed

interval [a, b] such that cn =
∫ b
a
fn(x) dx converges to some real number c, but fn(x)

does not converge uniformly on [a, b]. [5]

Solution. We’ll go whole hog and find such a sequence such that fn(x) doesn’t even
converge pointwise for various x ∈ [a, b].

Let [a, b] = [−π, π] and fn(x) = sin(nx) for n ≥ 0. Then each fn is certainly defined
and continuous on [a, b].

When n ≥ 1, the substitution u = nx, so du = ndx, and thus dx = 1
n du and

x −π π

u −nπ nπ ,
gives: ∫ π

−π
sin(nx) dx =

∫ nπ

−nπ
sin(u) · 1

n
du =

1

n
cos(u)

∣∣∣∣nπ
−nπ

=
1

n
cos(nπ)− 1

n
cos(−nπ) =

1

n
cos(nπ)− 1

n
cos(nπ) = 0

[Recall that cos(−x) = cos(x) for all x.] The special case n = 0 is left to the reader . . .
Thus it is certainly the case that cn =

∫ π
−π sin(nx) dx = 0 converges. (To? :-)

However, fn(x) = sin(nx) does not even converge pointwise for some x ∈ [−π, π].
For example, consider x = π/2. If n is even, then sin (nπ/2) = 0, but if n is odd, then
sin (nπ/2) = ±1, depending upon whether n = 1 (mod 4) or n = 3 (mod 4). Since there
are infinitely many even and infinitely many odd numbers of each type, it follows that
lim
n→∞

sin (nπ/2) doesn’t exist. Given that fn(x) doesn’t even converge pointwise for some

x in the interval, it cannot converge uniformly. �
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Quiz #9. Monday, 19 March, 2012. [10 minutes]

1. Find the radius of convergence of
∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1. [2]

2. Assuming that sin(x) =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1 when the series converges, find a power

series equal to cos(x). [3]

Solution to 1. As usual, we use the Ratio Test to find the radius of convergence:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n+1

(2(n+1)+1)!x
2(n+1)+1

(−1)n
(2n+1)!x

2n+1

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣
(−1)n+1

(2n+3)! x
2n+3

(−1)n
(2n+1)!x

2n+1

∣∣∣∣∣∣
= lim
n→∞

∣∣∣∣ (−1)n+1x2n+3

(2n+ 3)!
· (2n+ 1)!

(−1)nx2n+1

∣∣∣∣ = lim
n→∞

∣∣∣∣ −1

(2n+ 2)(2n+ 3)
x2
∣∣∣∣

=
∣∣x2∣∣ lim

n→∞

1

(2n+ 2)(2n+ 3)
=
∣∣x2∣∣ · 0 = 0 ,

since (2n+2)(2n+3)→∞ as n→∞. It follows by the Ratio Test that the series converges
no matter what the value of x is, i.e. the radius of convergence is R =∞. �

Solution to 2. Within the radius of convergence of a power series we can differentiate
or integrate it term-by-term and get the power series that adds up to the derivative or
integral, respectively, of the function that the original power series added up to. In this
case, since cos(x) = d

dx sin(x), we get:

cos(x) =
d

dx
sin(x) =

d

dx

( ∞∑
n=0

(−1)n

(2n+ 1)!
x2n+1

)
=
∞∑
n=0

d

dx

(−1)n

(2n+ 1)!
x2n+1

=
∞∑
n=0

(−1)n

(2n+ 1)!
(2n+ 1)x2n =

∞∑
n=0

(−1)n

(2n)!
x2n

Note that this series must – and actually does! – have the same radius of convergence as
the original power series for sin(x), i.e. R =∞. �
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