Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Winter 2012

Quiz Solutions

Quiz \#1. Monday, 16 Thursday, 19 January, 2012. [10 minutes]

1. Suppose $X \subset \mathbb{R}$ has $\sup (X)=\operatorname{lub}(X)=a$. Show that if $Y=\{-x \mid x \in X\}$, then $\inf (Y)=\operatorname{glb}(Y)=-a .[5]$
Solution. First, we check that $-a$ is indeed a lower bound for Y :
If $y \in Y$, then, by the definition of $Y, y=-x$ for some $x \in X$. Since a is an upper bound for $X, a \geq x$, so $-a \leq-x=y$. Since this argument works for every $y \in Y$, it follows that $-a$ is a lower bound for Y.
Second, we check that $-a$ is also the greatest lower bound for Y :
Suppose e is any lower bound for Y, i.e. $e \leq y$ for all $y \in Y$. Since $Y=$ $\{-x \mid x \in X\}$, it follows that $e \leq-x$ for all $x \in X$, from which it follows that $-e \geq x$ for all $x \in X$. This means that $-e$ is an upper bound for X, so $-e \geq a$, because a is the least upper bound of X. But then $e \leq-a$. Thus $-a$ is the greatest lower bound of Y.
That's all, folks!
Quiz \#2. Monday, 23 January, 2012. [10 minutes]
2. Suppose you are given that $\lim _{n \rightarrow \infty} \frac{1}{n}=0$. Use this fact, plus some algebra and the limit laws for sequences, to compute $\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n+2}$.
Solution. Here goes. Algebra first,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n+2} & =\lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{n^{2}+2 n+2} \cdot \frac{1 / n^{2}}{1 / n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}+\frac{2 n}{n^{2}}+\frac{1}{n^{2}}}{\frac{n^{2}}{n^{2}}+\frac{2 n}{n^{2}}+\frac{2}{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n}+\frac{1}{n^{2}}}{1+\frac{2}{n}+\frac{2}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1+2 \cdot \frac{1}{n}+\left(\frac{1}{n}\right)^{2}}{1+2 \cdot \frac{1}{n}+2 \cdot\left(\frac{1}{n}\right)^{2}}
\end{aligned}
$$

\ldots and then the limit laws: $=\frac{\lim _{n \rightarrow \infty}\left[1+2 \cdot \frac{1}{n}+\left(\frac{1}{n}\right)^{2}\right]}{\lim _{n \rightarrow \infty}\left[1+2 \cdot \frac{1}{n}+2 \cdot\left(\frac{1}{n}\right)^{2}\right]} \quad$ [Quotient Law]
$=\frac{\left[\lim _{n \rightarrow \infty} 1\right]+\left[\lim _{n \rightarrow \infty} 2 \cdot \frac{1}{n}\right]+\left[\lim _{n \rightarrow \infty}\left(\frac{1}{n}\right)^{2}\right]}{\left[\lim _{n \rightarrow \infty} 1\right]+\left[\lim _{n \rightarrow \infty} 2 \cdot \frac{1}{n}\right]+\left[\lim _{n \rightarrow \infty} 2 \cdot\left(\frac{1}{n}\right)^{2}\right]} \quad$ [Sum Law]
$=\frac{\left[\lim _{n \rightarrow \infty} 1\right]+2\left[\lim _{n \rightarrow \infty} \frac{1}{n}\right]+\left[\lim _{n \rightarrow \infty} \frac{1}{n}\right]^{2}}{\left[\lim _{n \rightarrow \infty} 1\right]+2\left[\lim _{n \rightarrow \infty} \frac{1}{n}\right]+2\left[\lim _{n \rightarrow \infty} \frac{1}{n}\right]^{2}} \quad \begin{aligned} & \text { Product Laws }]\end{aligned}$
$=\frac{1+2 \cdot 0+0^{2}}{1+2 \cdot 0+2 \cdot 0^{2}}=\frac{1}{1}=1 \quad[$ Given fact $]$

Quiz \#3. Monday, 30 January, 2012. [10 minutes]

1. If n is a positive integer, then the square-free part of n is $v(n)=\frac{n}{m^{2}}$, where m is the largest positive integer whose square divides n. Let $a_{n}=\frac{1}{v(n)}$ for $n \geq 1$. Find two subsequences of a_{n} which converge to different limits. [5]
Hint: The first thirty elements of the sequence are:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
$v(n)$	1	2	3	1	5	6	7	2	1	10	11	3	13	14	15
a_{n}	1	$\frac{1}{2}$	$\frac{1}{3}$	1	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{2}$	1	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{3}$	$\frac{1}{13}$	$\frac{1}{14}$	$\frac{1}{15}$
n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$v(n)$	1	17	2	19	5	21	22	23	6	1	26	3	28	29	30
a_{n}	1	$\frac{1}{17}$	$\frac{1}{2}$	$\frac{1}{19}$	$\frac{1}{5}$	$\frac{1}{21}$	$\frac{1}{22}$	$\frac{1}{23}$	$\frac{1}{6}$	1	$\frac{1}{26}$	$\frac{1}{3}$	$\frac{1}{7}$	$\frac{1}{29}$	$\frac{1}{30}$

Solution. Note that since $1 \leq v(n) \leq n$ for each $n \geq 1$, we must always have $0<a_{n} \leq 1$, so yhe sequence is bounded, and hence must have a convergent subsequence.

Here is a recipe that will find infinitely many subsequences of a_{n}, each with a different limit. For each integer $t>0$ such that the largest m for which m^{2} divides t is 1 , i.e. for which $v(t)=t$, consider the subsequence $a_{n_{k}}($ for $k \geq 1)$ of a_{n} given by $a_{n_{k}}=a_{t k^{2}}=$ $\frac{1}{v\left(t k^{2}\right)}$. Since $v\left(t k^{2}\right)=t, a_{n_{k}}=\frac{1}{t}$ for each $k \geq 1$, so $\lim _{k \rightarrow \infty} a_{n_{k}}=\lim _{k \rightarrow \infty} \frac{1}{t}=\frac{1}{t}$.

For example, $t=1$ gives the subsequence $a_{1}=1, a_{4}=1, a_{9}=1, a_{16}=1, \ldots$, while $t=2$ gives the subsequence $a_{2}=\frac{1}{2}, a_{8}=\frac{1}{2}, a_{18}=\frac{1}{2}, a_{32}=\frac{1}{2}, \ldots$

There are also lots of ways of picking subsequences that have a limit of 0 . For example, if p_{n} is the nth prime number, then $a_{p_{n}}=\frac{1}{p_{n}}$. This gives the subsequence $a_{2}=\frac{1}{2}, a_{3}=\frac{1}{3}$, $a_{5}=\frac{1}{5}, a_{7}=\frac{1}{7}, a_{11}=\frac{1}{11}, a_{13}=\frac{1}{13}, a_{17}=\frac{1}{17}, \ldots$

Quiz \#4. Monday, 6 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n}{n^{2}-n+1}$ converges or not. [5]

Solution. We will use the Limit Comparison Test to show that the given series diverges because the Harmonic Series does so:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{n}{n^{2}-n+1}}{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \frac{n}{n^{2}-n+1} \cdot \frac{n}{1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-n+1}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-n+1} \cdot \frac{1 / n^{2}}{1 / n^{2}} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n^{2}}{n^{2}}}{\frac{n^{2}}{n^{2}}-\frac{n}{n^{2}}+\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{1}{1-\frac{1}{n}+\frac{1}{n^{2}}}=\frac{1}{1-0+0}=1
\end{aligned}
$$

because $\frac{1}{n} \rightarrow 0$ and $\frac{1}{n^{2}} \rightarrow 0$ as $n \rightarrow \infty$. Since $0<1<\infty$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge, it follows by the Limit Comparison Test that $\sum_{n=0}^{\infty} \frac{n}{n^{2}-n+1}$ does not converge either.

Quiz \#5. Monday, 13 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n^{2}+n}{3^{n}}$ converges or not. [5]

Solution. We will us the Ratio Test to show that the given series converges. Note that all terms of this series are ≥ 0.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{\frac{(n+1)^{2}+(n+1)}{3^{n+1}}}{\frac{n^{2}+n}{3^{n}}}\right| & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}+(n+1)}{n^{2}+n} \cdot \frac{3^{n}}{3^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)((n+1)+1))}{n(n+1)} \cdot \frac{1}{3} \\
& =\frac{1}{3} \lim _{n \rightarrow \infty} \frac{n+2}{n}=\frac{1}{3} \lim _{n \rightarrow \infty}\left(\frac{n}{n}+\frac{2}{n}\right)=\frac{1}{3} \lim _{n \rightarrow \infty}\left(1+\frac{2}{n}\right) \\
& =\frac{1}{3}(1+0)=\frac{1}{3}<1
\end{aligned}
$$

Since the limit gives a value less than 1 , it follows by the Ratio Test that the given series converges.

Quiz \#6. Monday, 27 February, 2012. [10 minutes]

1. Find the radius and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!} x^{n}
$$

Solution. We will use the Ratio Test to find the radius of convergence.

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-n+1\right)\left(\frac{1}{2}-(n+1)-1\right)}{(n+1)!} x^{n+1}}{\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right) \cdots\left(\frac{1}{2}-n+1\right)}{n!} x^{n}}\right| \\
&=\lim _{n \rightarrow \infty}\left|\frac{\frac{1}{2}-n}{n+1} x\right|=\lim _{n \rightarrow \infty} \frac{n-\frac{1}{2}}{n+1}|x|=1 \cdot|x|=|x|
\end{aligned}
$$

It follows by the Ratio Test that the series converges absolutely when $|x|<1$ and diverges when $|x|>1$, i.e. its radius of convergence is $R=1$.

To find the interval of convergence we need to determine whether the series converges or not at the endpoints, $x= \pm 1$. We will apply Gauss' Test - check out the handout about it! Observe that the absolute value of the ratio of coefficients in the computation for the Ratio Test above came down to $\frac{n-\frac{1}{2}}{n+1}$. The highest power of n appearing is 1 and is the same in both the numerator and denominator, where it occurs with coefficient 1 in both, so we need not work further to make them so. Looking at the coefficients of the next lowest power of n, i.e. the constant terms, we observe that $-\frac{1}{2}<0=1-1$. It follows by part 5 of Gauss' Test that the series is absolutely convergent when $x= \pm R= \pm 1$, i.e. it converges at both endpoints. The interval of convergence of the given series is therefore $[-1,1]$.

Quiz \#7. Monday, 5 March, 2012. [10 minutes]

1. Verify that the sequence of functions $f_{n}(x)=e^{-n x}$ converges uniformly to the function $f(x)=0$ on the interval $[1,2]$. [5]
Solution. We need to check that for any $\varepsilon>0$, there is an N such that if $n \geq N$, then $\left|f_{n}(x)-f(x)\right|=\left|e^{-n x}-0\right|<\varepsilon$ for all $x \in[1,2]$.

Suppose an $\varepsilon>0$ is given. Then, recalling that $e^{-t}>0$ for all t,

$$
\left|e^{-n x}-0\right|<\varepsilon \quad \Longleftrightarrow \quad e^{-n x}<\varepsilon
$$

Since e^{-t} is a decreasing function, $e^{-n}=e^{-n 1} \geq e^{-n x}$ for all $x \in[1,2]$. Thus it will suffice to ensure that $e^{-n}<\varepsilon$. Note that

$$
e^{-n}<\varepsilon \Longleftrightarrow-n<\ln (\varepsilon) \Longleftrightarrow n>-\ln (\varepsilon) \Longleftrightarrow n>\ln (1 / \varepsilon) .
$$

Let $N>\ln (1 / \varepsilon)$. Then if $n \geq N>\ln (1 / \varepsilon)$, we have $\left|e^{-n x}-0\right|=e^{-n x} \leq e^{-n}<\varepsilon$ for all $x \in[1,2]$.

Thus $f_{n}(x)=e^{-n x}$ converges uniformly to $f(x)=0$ on the interval $[1,2]$.
Quiz \#8. Monday, 12 March, 2012. [15 minutes]

1. Give an example of a sequence of continuous functions $f_{n}(x)$ defined on a closed interval $[a, b]$ such that $c_{n}=\int_{a}^{b} f_{n}(x) d x$ converges to some real number c, but $f_{n}(x)$ does not converge uniformly on $[a, b]$. [5]

Solution. We'll go whole hog and find such a sequence such that $f_{n}(x)$ doesn't even converge pointwise for various $x \in[a, b]$.

Let $[a, b]=[-\pi, \pi]$ and $f_{n}(x)=\sin (n x)$ for $n \geq 0$. Then each f_{n} is certainly defined and continuous on $[a, b]$.

When $n \geq 1$, the substitution $u=n x$, so $d u=n d x$, and thus $d x=\frac{1}{n} d u$ and $\begin{array}{cc}x-\pi & \pi \\ u-n \pi & n \pi\end{array}$, gives:

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin (n x) d x & =\int_{-n \pi}^{n \pi} \sin (u) \cdot \frac{1}{n} d u=\left.\frac{1}{n} \cos (u)\right|_{-n \pi} ^{n \pi} \\
& =\frac{1}{n} \cos (n \pi)-\frac{1}{n} \cos (-n \pi)=\frac{1}{n} \cos (n \pi)-\frac{1}{n} \cos (n \pi)=0
\end{aligned}
$$

[Recall that $\cos (-x)=\cos (x)$ for all x.] The special case $n=0$ is left to the reader \ldots Thus it is certainly the case that $c_{n}=\int_{-\pi}^{\pi} \sin (n x) d x=0$ converges. (To? :-)

However, $f_{n}(x)=\sin (n x)$ does not even converge pointwise for some $x \in[-\pi, \pi]$. For example, consider $x=\pi / 2$. If n is even, then $\sin (n \pi / 2)=0$, but if n is odd, then $\sin (n \pi / 2)= \pm 1$, depending upon whether $n=1(\bmod 4)$ or $n=3(\bmod 4)$. Since there are infinitely many even and infinitely many odd numbers of each type, it follows that $\lim _{n \rightarrow \infty} \sin (n \pi / 2)$ doesn't exist. Given that $f_{n}(x)$ doesn't even converge pointwise for some x in the interval, it cannot converge uniformly.

Quiz \#9. Monday, 19 March, 2012. [10 minutes]

1. Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \cdot$ [2]
2. Assuming that $\sin (x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$ when the series converges, find a power series equal to $\cos (x)$. [3]
Solution to 1. As usual, we use the Ratio Test to find the radius of convergence:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(2(n+1)+1)!} x^{2(n+1)+1}}{\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{\frac{(-1)^{n+1}}{(2 n+3)!} x^{2 n+3}}{\frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}}\right| \\
& =\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{(2 n+3)!} \cdot \frac{(2 n+1)!}{(-1)^{n} x^{2 n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{-1}{(2 n+2)(2 n+3)} x^{2}\right| \\
& =\left|x^{2}\right| \lim _{n \rightarrow \infty} \frac{1}{(2 n+2)(2 n+3)}=\left|x^{2}\right| \cdot 0=0
\end{aligned}
$$

since $(2 n+2)(2 n+3) \rightarrow \infty$ as $n \rightarrow \infty$. It follows by the Ratio Test that the series converges no matter what the value of x is, i.e. the radius of convergence is $R=\infty$.
Solution to 2. Within the radius of convergence of a power series we can differentiate or integrate it term-by-term and get the power series that adds up to the derivative or integral, respectively, of the function that the original power series added up to. In this case, since $\cos (x)=\frac{d}{d x} \sin (x)$, we get:

$$
\begin{aligned}
\cos (x)=\frac{d}{d x} \sin (x) & =\frac{d}{d x}\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}\right)=\sum_{n=0}^{\infty} \frac{d}{d x} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!}(2 n+1) x^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} x^{2 n}
\end{aligned}
$$

Note that this series must - and actually does! - have the same radius of convergence as the original power series for $\sin (x)$, i.e. $R=\infty$.

