Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Winter 2012

Quiz Solutions

Quiz #1. Monday, 16 Thursday, 19 January, 2012. [10 minutes]

1. Suppose $X \subset \mathbb{R}$ has $\sup(X) = \operatorname{lub}(X) = a$. Show that if $Y = \{-x \mid x \in X\}$, then $\inf(Y) = \operatorname{glb}(Y) = -a$. [5]

SOLUTION. First, we check that -a is indeed a lower bound for Y:

If $y \in Y$, then, by the definition of Y, y = -x for some $x \in X$. Since a is an upper bound for X, $a \ge x$, so $-a \le -x = y$. Since this argument works for every $y \in Y$, it follows that -a is a lower bound for Y.

Second, we check that -a is also the greatest lower bound for Y:

Suppose e is any lower bound for Y, *i.e.* $e \leq y$ for all $y \in Y$. Since $Y = \{-x \mid x \in X\}$, it follows that $e \leq -x$ for all $x \in X$, from which it follows that $-e \geq x$ for all $x \in X$. This means that -e is an upper bound for X, so $-e \geq a$, because a is the least upper bound of X. But then $e \leq -a$. Thus -a is the greatest lower bound of Y.

That's all, folks! ■

... an

Quiz #2. Monday, 23 January, 2012. [10 minutes]

1. Suppose you are given that $\lim_{n \to \infty} \frac{1}{n} = 0$. Use this fact, plus some algebra and the limit laws for sequences, to compute $\lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n + 2}$.

SOLUTION. Here goes. Algebra first,

$$\lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n + 2} = \lim_{n \to \infty} \frac{n^2 + 2n + 1}{n^2 + 2n + 2} \cdot \frac{1/n^2}{1/n^2} = \lim_{n \to \infty} \frac{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{1}{n^2}}{\frac{n^2}{n^2} + \frac{2n}{n^2} + \frac{2}{n^2}}$$
$$= \lim_{n \to \infty} \frac{1 + \frac{2}{n} + \frac{1}{n^2}}{1 + \frac{2}{n} + \frac{1}{n^2}} = \lim_{n \to \infty} \frac{1 + 2 \cdot \frac{1}{n} + (\frac{1}{n})^2}{1 + 2 \cdot \frac{1}{n} + 2 \cdot (\frac{1}{n})^2}$$
$$\text{d then the limit laws:} = \frac{\lim_{n \to \infty} \left[1 + 2 \cdot \frac{1}{n} + (\frac{1}{n})^2\right]}{\lim_{n \to \infty} \left[1 + 2 \cdot \frac{1}{n} + 2 \cdot (\frac{1}{n})^2\right]} \quad [\text{Quotient Law}]$$
$$= \frac{\left[\lim_{n \to \infty} 1\right] + \left[\lim_{n \to \infty} 2 \cdot \frac{1}{n}\right] + \left[\lim_{n \to \infty} 2 \cdot (\frac{1}{n})^2\right]}{\left[\lim_{n \to \infty} 1\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right]^2} \quad [\text{Sum Law}]$$
$$= \frac{\left[\lim_{n \to \infty} 1\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right]^2}{\left[\lim_{n \to \infty} 1\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right] + 2\left[\lim_{n \to \infty} \frac{1}{n}\right]^2} \quad [\text{Constant \&}$$
$$= \frac{1 + 2 \cdot 0 + 0^2}{1 + 2 \cdot 0 + 2 \cdot 0^2} = \frac{1}{1} = 1 \quad [\text{Given fact}]$$

Quiz #3. Monday, 30 January, 2012. [10 minutes]

1. If n is a positive integer, then the square-free part of n is $v(n) = \frac{n}{m^2}$, where m is the largest positive integer whose square divides n. Let $a_n = \frac{1}{v(n)}$ for $n \ge 1$. Find two subsequences of a_n which converge to different limits. [5]

Hint: The first thirty elements of the sequence are:

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
v(n)	1	2	3	1	5	6	7	2	1	10	11	3	13	14	15
a_n	1	$\frac{1}{2}$	$\frac{1}{3}$	1	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	$\frac{1}{2}$	1	$\frac{1}{10}$	$\frac{1}{11}$	$\frac{1}{3}$	$\frac{1}{13}$	$\frac{1}{14}$	$\frac{1}{15}$
n	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
$n \ v(n)$															

SOLUTION. Note that since $1 \le v(n) \le n$ for each $n \ge 1$, we must always have $0 < a_n \le 1$, so yhe sequence is bounded, and hence must have a convergent subsequence.

Here is a recipe that will find infinitely many subsequences of a_n , each with a different limit. For each integer t > 0 such that the largest m for which m^2 divides t is 1, *i.e.* for which v(t) = t, consider the subsequence a_{n_k} (for $k \ge 1$) of a_n given by $a_{n_k} = a_{tk^2} = \frac{1}{v(tk^2)}$. Since $v(tk^2) = t$, $a_{n_k} = \frac{1}{t}$ for each $k \ge 1$, so $\lim_{k \to \infty} a_{n_k} = \lim_{k \to \infty} \frac{1}{t} = \frac{1}{t}$. For example, t = 1 gives the subsequence $a_1 = 1$, $a_4 = 1$, $a_9 = 1$, $a_{16} = 1$, ..., while

For example, t = 1 gives the subsequence $a_1 = 1$, $a_4 = 1$, $a_9 = 1$, $a_{16} = 1$, ..., while t = 2 gives the subsequence $a_2 = \frac{1}{2}$, $a_8 = \frac{1}{2}$, $a_{18} = \frac{1}{2}$, $a_{32} = \frac{1}{2}$, ... There are also lots of ways of picking subsequences that have a limit of 0. For example,

Increase also lots of ways of picking subsequences that have a limit of 0. For example, if p_n is the *n*th prime number, then $a_{p_n} = \frac{1}{p_n}$. This gives the subsequence $a_2 = \frac{1}{2}$, $a_3 = \frac{1}{3}$, $a_5 = \frac{1}{5}$, $a_7 = \frac{1}{7}$, $a_{11} = \frac{1}{11}$, $a_{13} = \frac{1}{13}$, $a_{17} = \frac{1}{17}$, ...

Quiz #4. Monday, 6 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n}{n^2 - n + 1}$ converges or not. [5]

SOLUTION. We will use the Limit Comparison Test to show that the given series diverges because the Harmonic Series does so:

$$\lim_{n \to \infty} \frac{\frac{n}{n^2 - n + 1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n^2 - n + 1} \cdot \frac{n}{1} = \lim_{n \to \infty} \frac{n^2}{n^2 - n + 1} = \lim_{n \to \infty} \frac{n^2}{n^2 - n + 1} \cdot \frac{1/n^2}{1/n^2}$$
$$= \lim_{n \to \infty} \frac{\frac{n^2}{n^2}}{\frac{n^2}{n^2} - \frac{n}{n^2} + \frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{1 - \frac{1}{n} + \frac{1}{n^2}} = \frac{1}{1 - 0 + 0} = 1$$

because $\frac{1}{n} \to 0$ and $\frac{1}{n^2} \to 0$ as $n \to \infty$. Since $0 < 1 < \infty$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ does not converge, it

follows by the Limit Comparison Test that $\sum_{n=0}^{\infty} \frac{n}{n^2 - n + 1}$ does not converge either.

Quiz #5. Monday, 13 February, 2012. [10 minutes]

1. Determine whether $\sum_{n=0}^{\infty} \frac{n^2 + n}{3^n}$ converges or not. [5]

SOLUTION. We will us the Ratio Test to show that the given series converges. Note that all terms of this series are ≥ 0 .

$$\lim_{n \to \infty} \left| \frac{\frac{(n+1)^2 + (n+1)}{3^{n+1}}}{\frac{n^2 + n}{3^n}} \right| = \lim_{n \to \infty} \frac{(n+1)^2 + (n+1)}{n^2 + n} \cdot \frac{3^n}{3^{n+1}} = \lim_{n \to \infty} \frac{(n+1)\left((n+1) + 1\right)}{n(n+1)} \cdot \frac{1}{3}$$
$$= \frac{1}{3}\lim_{n \to \infty} \frac{n+2}{n} = \frac{1}{3}\lim_{n \to \infty} \left(\frac{n}{n} + \frac{2}{n}\right) = \frac{1}{3}\lim_{n \to \infty} \left(1 + \frac{2}{n}\right)$$
$$= \frac{1}{3}\left(1 + 0\right) = \frac{1}{3} < 1$$

Since the limit gives a value less than 1, it follows by the Ratio Test that the given series converges. \blacksquare

Quiz #6. Monday, 27 February, 2012. [10 minutes]

1. Find the radius and interval of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{\frac{1}{2} \left(\frac{1}{2} - 1\right) \left(\frac{1}{2} - 2\right) \cdots \left(\frac{1}{2} - n + 1\right)}{n!} x^n \,. \quad [5]$$

SOLUTION. We will use the Ratio Test to find the radius of convergence.

$$\lim_{n \to \infty} \left| \frac{\frac{\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \cdots (\frac{1}{2} - n + 1)(\frac{1}{2} - (n + 1) - 1)}{(n + 1)!} x^{n + 1}}{\frac{\frac{1}{2} (\frac{1}{2} - 1)(\frac{1}{2} - 2) \cdots (\frac{1}{2} - n + 1)}{n!} x^n} \right|$$
$$= \lim_{n \to \infty} \left| \frac{\frac{1}{2} - n}{n + 1} x \right| = \lim_{n \to \infty} \frac{n - \frac{1}{2}}{n + 1} |x| = 1 \cdot |x| = |x|$$

It follows by the Ratio Test that the series converges absolutely when |x| < 1 and diverges when |x| > 1, *i.e.* its radius of convergence is R = 1.

To find the interval of convergence we need to determine whether the series converges or not at the endpoints, $x = \pm 1$. We will apply Gauss' Test – check out the handout about it! Observe that the absolute value of the ratio of coefficients in the computation for the Ratio Test above came down to $\frac{n-\frac{1}{2}}{n+1}$. The highest power of n appearing is 1 and is the same in both the numerator and denominator, where it occurs with coefficient 1 in both, so we need not work further to make them so. Looking at the coefficients of the next lowest power of n, *i.e.* the constant terms, we observe that $-\frac{1}{2} < 0 = 1 - 1$. It follows by part 5 of Gauss' Test that the series is absolutely convergent when $x = \pm R = \pm 1$, *i.e.* it converges at both endpoints. The interval of convergence of the given series is therefore [-1, 1]. Quiz #7. Monday, 5 March, 2012. [10 minutes]

1. Verify that the sequence of functions $f_n(x) = e^{-nx}$ converges uniformly to the function f(x) = 0 on the interval [1, 2]. [5]

SOLUTION. We need to check that for any $\varepsilon > 0$, there is an N such that if $n \ge N$, then $|f_n(x) - f(x)| = |e^{-nx} - 0| < \varepsilon$ for all $x \in [1, 2]$.

Suppose an $\varepsilon > 0$ is given. Then, recalling that $e^{-t} > 0$ for all t,

$$\left|e^{-nx}-0\right|<\varepsilon\quad\Longleftrightarrow\quad e^{-nx}<\varepsilon\,.$$

Since e^{-t} is a decreasing function, $e^{-n} = e^{-n1} \ge e^{-nx}$ for all $x \in [1, 2]$. Thus it will suffice to ensure that $e^{-n} < \varepsilon$. Note that

 $e^{-n} < \varepsilon \quad \Longleftrightarrow \quad -n < \ln(\varepsilon) \quad \Longleftrightarrow \quad n > -\ln(\varepsilon) \quad \Longleftrightarrow \quad n > \ln(1/\varepsilon) \;.$

Let $N > \ln(1/\varepsilon)$. Then if $n \ge N > \ln(1/\varepsilon)$, we have $|e^{-nx} - 0| = e^{-nx} \le e^{-n} < \varepsilon$ for all $x \in [1, 2]$.

Thus $f_n(x) = e^{-nx}$ converges uniformly to f(x) = 0 on the interval [1,2].

Quiz #8. Monday, 12 March, 2012. [15 minutes]

1. Give an example of a sequence of continuous functions $f_n(x)$ defined on a closed interval [a, b] such that $c_n = \int_a^b f_n(x) dx$ converges to some real number c, but $f_n(x)$ does not converge uniformly on [a, b]. [5]

SOLUTION. We'll go whole hog and find such a sequence such that $f_n(x)$ doesn't even converge pointwise for various $x \in [a, b]$.

Let $[a, b] = [-\pi, \pi]$ and $f_n(x) = sin(nx)$ for $n \ge 0$. Then each f_n is certainly defined and continuous on [a, b].

When $n \ge 1$, the substitution u = nx, so du = n dx, and thus $dx = \frac{1}{n} du$ and $\frac{x - \pi - \pi}{u - n\pi n\pi}$, gives:

$$\int_{-\pi}^{\pi} \sin(nx) \, dx = \int_{-n\pi}^{n\pi} \sin(u) \cdot \frac{1}{n} \, du = \frac{1}{n} \cos(u) \Big|_{-n\pi}^{n\pi}$$
$$= \frac{1}{n} \cos(n\pi) - \frac{1}{n} \cos(-n\pi) = \frac{1}{n} \cos(n\pi) - \frac{1}{n} \cos(n\pi) = 0$$

[Recall that $\cos(-x) = \cos(x)$ for all x.] The special case n = 0 is left to the reader ... Thus it is certainly the case that $c_n = \int_{-\pi}^{\pi} \sin(nx) dx = 0$ converges. (To? :-)

However, $f_n(x) = \sin(nx)$ does not even converge pointwise for some $x \in [-\pi, \pi]$. For example, consider $x = \pi/2$. If n is even, then $\sin(n\pi/2) = 0$, but if n is odd, then $\sin(n\pi/2) = \pm 1$, depending upon whether $n = 1 \pmod{4}$ or $n = 3 \pmod{4}$. Since there are infinitely many even and infinitely many odd numbers of each type, it follows that $\lim_{n \to \infty} \sin(n\pi/2)$ doesn't exist. Given that $f_n(x)$ doesn't even converge pointwise for some x in the interval, it cannot converge uniformly. Quiz #9. Monday, 19 March, 2012. [10 minutes]

- **1.** Find the radius of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$. [2]
- **2.** Assuming that $\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ when the series converges, find a power series equal to $\cos(x)$. [3]

SOLUTION TO 1. As usual, we use the Ratio Test to find the radius of convergence:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}}{(2(n+1)+1)!} x^{2(n+1)+1}}{\frac{(-1)^n}{(2n+1)!} x^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{\frac{(-1)^{n+1}}{(2n+3)!} x^{2n+3}}{\frac{(-1)^n}{(2n+1)!} x^{2n+1}} \right|$$
$$= \lim_{n \to \infty} \left| \frac{(-1)^{n+1} x^{2n+3}}{(2n+3)!} \cdot \frac{(2n+1)!}{(-1)^n x^{2n+1}} \right| = \lim_{n \to \infty} \left| \frac{-1}{(2n+2)(2n+3)} x^2 \right|$$
$$= \left| x^2 \right| \lim_{n \to \infty} \frac{1}{(2n+2)(2n+3)} = \left| x^2 \right| \cdot 0 = 0,$$

since $(2n+2)(2n+3) \to \infty$ as $n \to \infty$. It follows by the Ratio Test that the series converges no matter what the value of x is, *i.e.* the radius of convergence is $R = \infty$. \Box

SOLUTION TO 2. Within the radius of convergence of a power series we can differentiate or integrate it term-by-term and get the power series that adds up to the derivative or integral, respectively, of the function that the original power series added up to. In this case, since $\cos(x) = \frac{d}{dx}\sin(x)$, we get:

$$\cos(x) = \frac{d}{dx}\sin(x) = \frac{d}{dx}\left(\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}\right) = \sum_{n=0}^{\infty} \frac{d}{dx}\frac{(-1)^n}{(2n+1)!}x^{2n+1}$$
$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}(2n+1)x^{2n} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}$$

Note that this series must – and actually does! – have the same radius of convergence as the original power series for $\sin(x)$, *i.e.* $R = \infty$.