Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Winter 2012
 Assignment \#7
 Find the limit!
 Due on Thursday, 8 March, 2012.

1. Suppose we define a sequence a_{n} as follows: $a_{0}=\frac{1}{2}$ and $a_{n+1}=\frac{1}{1+a_{n}}$ for $n \geq 0$. Show that this sequence converges and find its limit. [10]

Note: To save the empirically inclined a little effort, here are the first few elements of the sequence:

n	a_{n}	decimal
0	$\frac{1}{2}$	0.5
1	$\frac{1}{1+\frac{1}{2}}=\frac{2}{3}$	$0.66666666666666 \ldots$
2	$\frac{1}{1+\frac{2}{3}}=\frac{5}{8}$	0.625
3	$\frac{1}{1+\frac{5}{8}}=\frac{8}{13}$	$0.61538461538461 \ldots$
4	$\frac{1}{1+\frac{8}{13}}=\frac{13}{21}$	$0.61904761904761 \ldots$
5	$\frac{1}{1+\frac{13}{21}}=\frac{21}{34}$	$0.61764705882352 \ldots$
\vdots	\vdots	\vdots

