# Mathematics 3790H - Analysis I: Introduction to analysis <br> Trent University, Fall 2010 <br> <br> Quizzes 

 <br> <br> Quizzes}

Quiz \#1. Thursday, 23 Tuesday, 28 Thursday, 30 September, 2010 (7 minutes)

1. Show that there is no smallest positive real number. [5]

Quiz \#2. Thursday, 30 September, 2010 ( 8 minutes)

1. Show that the sequence $s_{n}=\frac{n-1}{n}$ has a limit. [5]

Quiz \#3. Thursday, 7 Tuesday, 12 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not. [5]

Quiz \#4. Thursday, 14 Wednesday, 20 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{\left(5^{n}\right)^{n}}{n!e^{n}}$ converges or not. [5]

Quiz \#5. Thursday, 21 October, 2010 (10 minutes)

1. For which values of $a$ does the series $\sum_{n=0}^{\infty} \frac{1}{a^{2 n}+1}$ converge? [5]

Quiz \#6. Thursday, 4 November, 2010 (10 minutes)

1. Find the Taylor series at $a=1$ of $f(x)=\ln (x)$. [5]

Quiz \#7. Thursday, 11 November, 2010 (15 minutes)

1. Suppose $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ is a polynomial of degree $k$. Show that the Taylor series at $a=0$ of $p(x)$ is equal to $p(x)$. [5]

Quiz \#8. Thursday, 18 November, 2010 (15 minutes)

1. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a series with radius of convergence $R>0$ and $[a, b] \subset$ $(-R, R)$. Why is $f(x)$ bounded on $[a, b]$ ?

Quiz \#8. Alternate version. (15 minutes)

1. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a series with radius of convergence $R>0$ and $f(x)=1$ is constant on some closed interval $[-b, b] \subset(-R, R)$, where $b>0$. Determine $a_{n}$ for all $n \geq 0$.

Quiz \#9. Thutrsday, 25 Tuesday, 30 November, 2010 (15 minutes)

1. Show that $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. [2]
2. Find the Taylor series at 0 of $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$. [3]

Quiz \#9. Alternate version. (15 minutes)

1. Show that $e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2}+\frac{x^{6}}{6}+\cdots=\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$. [2]
2. Find the Taylor series at 0 of $f(x)=\int_{0}^{x} e^{x^{2}} d t$. [3]

Quiz \#10. Thursday, 2 December, 2010 (15 minutes)

1. Recall that $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$ for $x \in(-1,1)$. Show that the series cannot converge uniformly to $\frac{1}{1-x}$ over the whole interval $(-1,1)$.
Hint: $\frac{1}{1-x}$ has an asymptote at $x=1$.
Quiz \#11. Thursday, 2 December, 2010 (15 minutes)
2. Suppose $\sum_{n=0}^{\infty} a_{n}$ converges absolutely. Show that $\sum_{n=0}^{\infty} a_{n} \cos (n x)$ converges for all $x$.

Quiz \#11. Alternate version. (15 minutes)

1. Why can't there be a sequence of differentiable functions $f_{n}(x)$ such that $f_{n}(x)$ converges uniformly to $f(x)=|x|$ on $(-1,1)$ ?
