Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Fall 2010

Quizzes

- Quiz #1. Thursday, 23 Tuesday, 28 Thursday, 30 September, 2010 (7 minutes)
 1. Show that there is no smallest positive real number. [5]
- **Quiz #2.** Thursday, 30 September, 2010 (8 minutes) 1. Show that the sequence $s_n = \frac{n-1}{n}$ has a limit. [5]

Quiz #3. Thursday, 7 Tuesday, 12 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n3^n}$ converges or not. [5]

Quiz #4. Thursday, 14 Wednesday, 20 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{(5^n)^n}{n!e^n}$ converges or not. [5]

Quiz #5. Thursday, 21 October, 2010 (10 minutes)

1. For which values of a does the series $\sum_{n=0}^{\infty} \frac{1}{a^{2n}+1}$ converge? [5]

Quiz #6. Thursday, 4 November, 2010 (10 minutes)

1. Find the Taylor series at a = 1 of $f(x) = \ln(x)$. [5]

Quiz #7. Thursday, 11 November, 2010 (15 minutes)

1. Suppose $p(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_1 x + a_0$ is a polynomial of degree k. Show that the Taylor series at a = 0 of p(x) is equal to p(x). [5]

Quiz #8. Thursday, 18 November, 2010 (15 minutes)

1. Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is a series with radius of convergence R > 0 and $[a, b] \subset (-R, R)$. Why is f(x) bounded on [a, b]?

Quiz #8. Alternate version. (15 minutes)

1. Suppose $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is a series with radius of convergence R > 0 and f(x) = 1 is constant on some closed interval $[-b, b] \subset (-R, R)$, where b > 0. Determine a_n for all $n \ge 0$.

Quiz #9. Thursday, 25 Tuesday, 30 November, 2010 (15 minutes)

1. Show that $\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$. [2] 2. Find the Taylor series at 0 of $\arctan(x) = \int_{0}^{x} \frac{1}{1+t^2} dt$. [3]

Quiz #9. Alternate version. (15 minutes)

1. Show that $e^{x^2} = 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{6} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{n!}$. [2] 2. Find the Taylor series at 0 of $f(x) = \int_0^x e^{x^2} dt$. [3]

Quiz #10. Thursday, 2 December, 2010 (15 minutes)

- 1. Recall that $\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots = \sum_{n=0}^{\infty} x^n$ for $x \in (-1,1)$. Show that the series cannot converge uniformly to $\frac{1}{1-x}$ over the whole interval (-1,1). *Hint:* $\frac{1}{1-x}$ has an asymptote at x = 1.
- **Quiz #11.** Thursday, 2 December, 2010 (15 minutes) 1. Suppose $\sum_{n=0}^{\infty} a_n$ converges absolutely. Show that $\sum_{n=0}^{\infty} a_n \cos(nx)$ converges for all x.

Quiz #11. Alternate version. (15 minutes)

1. Why can't there be a sequence of differentiable functions $f_n(x)$ such that $f_n(x)$ converges uniformly to f(x) = |x| on (-1, 1)?