
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2010

Quizzes

Quiz #1. Thursday, 23 Tuesday, 28 Thursday, 30 September, 2010 (7 minutes)

1. Show that there is no smallest positive real number. [5]

Solution. Suppose (by way of contradiction) that r > 0 was the least positive real
number. Since the real numbers are a dense linear order, there must be a real number s
between 0 and r, i.e. such that 0 < s < r. s is smaller than r and at the same time s
is positive. (Remember, s > 0!) This contradicts the assumption that r was the smallest
positive real number.

Thus there is no smallest positive real number. �

Quiz #2. Thursday, 30 September, 2010 (8 minutes)

1. Show that the sequence sn =
n− 1

n
has a limit. [5]

Solution i. Observe that sn = n−1
n = n

n −
1
n = 1− 1

n . It follows that sn is an increasing
sequence:

n < n + 1 =⇒ 1

n
>

1

n + 1
=⇒ sn = 1− 1

n
< 1− 1

n + 1
= sn+1

Moreover, since sn = 1− 1
n < 1 for every n ≥ 1, the sequence is bounded above. It follows

that lim
n→∞

sn exists by the Monotone Convergence Theorem. �

Solution ii. It’s pretty easy to guess from the fact that sn = n−1
n = n

n −
1
n = 1− 1

n , that
lim
n→∞

sn ought to be 1. We verify that this is the case.

Suppose ε > 0 is given. We need to find an N such that for all n ≥ N , we have
|sn − 1| < ε. As usual, we use some reverse engineering to find the N :

|sn − 1| < ε⇐⇒ 1

n
=

∣∣∣∣1− 1

n
− 1

∣∣∣∣ < ε⇐⇒ n >
1

ε

Let N be the least integer (strictly) greater than 1
ε . Then if n ≥ N , we get

|sn − 1| =
∣∣∣∣1− 1

n
− 1

∣∣∣∣ =
1

n
≤ 1

N
< ε ,

as desired. Hence lim
n→∞

sn exists and equals 1. �
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Quiz #3. Thursday, 7 Tuesday, 12 October, 2010 (10 minutes)

1. Determine whether the series

∞∑
n=1

1

n3n
converges or not. [5]

Solution. We will use the (Basic!) Comparison Test. Note that when n ≥ 1, n3n ≥ 3n >

0, so 0 <
1

n3n
≤ 1

3n
. It follows by the Comparison Test that

∞∑
n=1

1

n3n
converges if

∞∑
n=1

1

3n

does. However,

∞∑
n=1

1

3n
=

∞∑
n=1

(
1

3

)n

is a geometric series with common ratio 0 <
1

3
< 1,

so it converges.

Hence the series
∞∑

n=1

1

n3n
converges. �

Quiz #4. Thursday, 14 Wednesday, 20 October, 2010 (10 minutes)

1. Determine whether the series
∞∑

n=1

(5n)
n

n!en
converges or not. [5]

Solution. We will use the Ratio Test. Note that since all terms are positive, we can drop
the absolute value signs.

lim
n→∞

(5n+1)
n+1

(n+1)!en+1

(5n)n

n!en

= lim
n→∞

5(n+1)(n+1)

(n+1)!en+1

5n·n

n!en

= lim
n→∞

5n
2+2n+1

(n + 1)!en+1
· n!en

5n2

= lim
n→∞

52n+1

(n + 1)e

Both the numerator and denominator go to infinity,

so we’ll use l’Hôpital’s Rule.

= lim
x→∞

52x+1

(x + 1)e

= lim
x→∞

ln(5) · 52x+1 · 2
1 · e

=
2ln(5)

e
lim
x→∞

52x+1

=
2ln(5)

e
· ∞ =∞ > 1

It follows that the series
∞∑

n=1

(5n)
n

n!en
diverges. �
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Quiz #5. Thursday, 21 October, 2010 (15 minutes)

1. For which values of a does the series
∞∑

n=0

1

a2n + 1
converge? [5]

Solution. This series converges if |a| > 1 and diverges if |a| ≤ 1.

If |a| > 1, then
1

|a|
< 1, so the geometric series

∞∑
n=0

(
1

|a|

)2n

=
∞∑

n=0

1

|a|2n
converges.

Note that a2n > 0 and so 0 <
1

a2n + 1
<

1

|a|2n
=

(
1

|a|

)2n

for all n. It follows by the

Comparison Test that
∞∑

n=0

1

a2n + 1
converges as well in this case.

If |a| ≤ 1, then |a|2n ≤ 1 for all n, so lim
n→∞

|a|2n = lim
n→∞

a2n ≤ 1. It follows that

∞
lim
n=0

1

a2n + 1
=

1(
lim
n→∞

a2n
)

+ 1
≥ 1

1 + 1
=

1

2
> 0, so the series

∞∑
n=0

1

a2n + 1
diverges by the

Divergence Test. [5]

Quiz #6. Thursday, 4 November, 2010 (10 minutes)

1. Find the Taylor series at a = 1 of f(x) = ln(x). [5]

Solution. Observe that if f(x) = ln(x), then f ′(x) = x−1, f ′′(x) = (−1)x−2, f ′′′(x) =
(−1)(−2)x−3 = (−1)22!x−3, f (4)(x) = (−1)22!(−3)x−4 = (−1)33!x−4, . . . , f (n)(x) =
(−1)n−1(n− 1)!x−n, . . . It follows that the Taylor series of f(x) = ln(x) at a = 1 is:

∞∑
n=0

f (n)(1)

n!
(x− 1)n = ln(1) +

∞∑
n=1

(−1)n−1(n− 1)!1−n

n!
(x− 1)n

= 0 +
∞∑

n=1

(−1)n−1

n
(x− 1)n

=

∞∑
n=1

(−1)n−1

n
(x− 1)n �
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Quiz #7. Thursday, 11 November, 2010 (15 minutes)

1. Suppose p(x) = akx
k + ak−1x

k−1 + · · ·+ a1x + a0 is a polynomial of degree k. Show
that the Taylor series at a = 0 of p(x) is equal to p(x). [5]

Solution. Consider the derivatives of p(x):

n p(n)(x) p(n)(0)
0 akx

k + ak−1x
k−1 + · · ·+ a1x + a0 0!a0

1 kakx
k−1 + (k − 1)ak−1x

k−2 + · · ·+ 2a2x + 1a1 1!a1
2 k(k − 1)akx

k−2 + (k − 1)(k − 2)ak−1x
k−2 + · · ·+ 2 · 1a2x 2!a2

...
...

...
k − 1 k(k − 1) · · · 3 · 2akx + (k − 1)(k − 2) · · · 3 · 2 · 1ak−1 (k − 1)!ak−1
k k(k − 1) · · · 3 · 2 · 1ak k!ak

k + 1 0 0
k + 2 0 0

...
...

...

Plugging this into Taylor’s formula gives

∞∑
n=0

p(n)(0)

n!
xn =

p(0)(0)

0!
+

p(1)(0)

1!
x +

p(2)(0)

2!
x2 + · · ·+ p(k)(0)

k!
xk +

p(k+1)(0)

(k + 1)!
xk+1 + · · ·

=
0!a0
0!

+
1!a1
1!

x +
2!a2
2!

x2 + · · ·+ k!ak
k!

xk +
0

(k + 1)!
xk+1 + · · ·

= a0 + a1x + a2x + · · ·+ akx
k + 0 + · · ·

= p(x) ,

as desired. �

Quiz #8. Thursday, 18 November, 2010 (15 minutes)

1. Suppose f(x) =
∑∞

n=0 anx
n is a series with radius of convergence R > 0 and [a, b] ⊂

(−R,R). Why is f(x) bounded on [a, b]?

Solution. f(x) =
∑∞

n=0 anx
n is a convergent power series on (−R,R), so it is continuous

on (−R,R). Since [a, b] ⊂ (−R,R), this means that f(x) is continuous on [a, b], and hence
is bounded on [a, b] by the max/min stuff from first-year calculus. �
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Quiz #9. Thursday, 25 Tuesday, 30 November, 2010 (15 minutes)

1. Show that
1

1 + x2
= 1− x2 + x4 − x6 + · · · =

∞∑
n=0

(−1)nx2n. [2]

2. Find the Taylor series at 0 of arctan(x) =

x∫
0

1

1 + t2
dt. [3]

Solution to 1. It’s a geometric series with first term 1 and common ratio −x2:

∞∑
n=0

(−1)nx2n = 1− x2 + x4 − x6 + · · · = 1

1− (−x2)
=

1

1 + x2
�

Solution to 2. We can integrate and differentiate power series term-by-term (within the
radius of convergence), so:

arctan(x) =

x∫
0

1

1 + t2
dt

=

x∫
0

(
1− t2 + t4 − t6 + · · ·

)
dt

=

x∫
0

1 dt−
x∫

0

t2 dt +

x∫
0

t4 dt−
x∫

0

t6 dt + · · ·

= t|x0 −
t3

3

∣∣∣∣x
0

+
t5

5

∣∣∣∣x
0

− t7

7

∣∣∣∣x
0

+ · · ·

= x− x3

3
+

x5

5
− x7

7
+ · · ·

=
∞∑

n=0

(−1)nx2n+1

2n + 1

This is the Taylor series of arctan(x) at 0 by the uniqueness of Taylor series: any power
series equal to a function on a non-trivial interval must be the function’s Taylor series. �
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Quiz #10. Thursday, 2 December, 2010 (15 minutes)

1. Recall that
1

1− x
= 1 + x + x2 + x3 + · · · =

∞∑
n=0

xn for x ∈ (−1, 1). Show that the

series cannot converge uniformly to
1

1− x
over the whole interval (−1, 1).

Hint:
1

1− x
has an asymptote at x = 1.

Solution. For the series
∞∑

n=0

xn to converge uniformly to
1

1− x
over the whole interval

(−1, 1) would mean, by definition, that for any ε > 0, there is some N such that for all

n ≥ N and all x ∈ (−1, 1),

∣∣∣∣∣ 1

1− x
−

n∑
k=0

xk

∣∣∣∣∣ < ε.

However, if we have any ε > 0 and N whatsoever, and x ∈ (−1, 1),
N∑

k=0

xk is bounded

above by
N∑

k=0

1k =
N∑

k=0

1 = N + 1. Since lim
x→1−

1

1− x
= ∞, we can find an x < 1 close

enough to 1 to ensure that
1

1− x
> N + 1 + ε >

N∑
k=0

xk + ε, so that

∣∣∣∣∣ 1

1− x
−

n∑
k=0

xk

∣∣∣∣∣ > ε.

Thus the definition of uniform convergence must fail if applied to the convergence of
∞∑

n=0

xn to
1

1− x
over the whole interval (−1, 1). �

Quiz #11. Thursday, 2 December, 2010 (15 minutes)

1. Suppose
∞∑

n=0
an converges absolutely. Show that

∞∑
n=0

an cos(nx) converges for all x.

Solution. Since |cos(nx)| ≤ 1 for all x, |an cos(nx)| ≤ |an| for all x and n. Since
∞∑

n=0
an

converges absolutely, it follows by the Comparison Test that
∞∑

n=0
an cos(nx) converges

absolutely, and hence converges, for all x. �
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