Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2010

 Quizzes

 Quizzes}

Quiz \#1. Thursday, 23 Tuesday, 28 Thursday, 30 September, 2010 (7 minutes)

1. Show that there is no smallest positive real number. [5]

Solution. Suppose (by way of contradiction) that $r>0$ was the least positive real number. Since the real numbers are a dense linear order, there must be a real number s between 0 and r, i.e. such that $0<s<r$. s is smaller than r and at the same time s is positive. (Remember, $s>0$!) This contradicts the assumption that r was the smallest positive real number.

Thus there is no smallest positive real number.
Quiz \#2. Thursday, 30 September, 2010 (8 minutes)

1. Show that the sequence $s_{n}=\frac{n-1}{n}$ has a limit. [5]

Solution I. Observe that $s_{n}=\frac{n-1}{n}=\frac{n}{n}-\frac{1}{n}=1-\frac{1}{n}$. It follows that s_{n} is an increasing sequence:

$$
n<n+1 \Longrightarrow \frac{1}{n}>\frac{1}{n+1} \Longrightarrow s_{n}=1-\frac{1}{n}<1-\frac{1}{n+1}=s_{n+1}
$$

Moreover, since $s_{n}=1-\frac{1}{n}<1$ for every $n \geq 1$, the sequence is bounded above. It follows that $\lim _{n \rightarrow \infty} s_{n}$ exists by the Monotone Convergence Theorem.
Solution iI. It's pretty easy to guess from the fact that $s_{n}=\frac{n-1}{n}=\frac{n}{n}-\frac{1}{n}=1-\frac{1}{n}$, that $\lim _{n \rightarrow \infty} s_{n}$ ought to be 1 . We verify that this is the case.

Suppose $\varepsilon>0$ is given. We need to find an N such that for all $n \geq N$, we have $\left|s_{n}-1\right|<\varepsilon$. As usual, we use some reverse engineering to find the N :

$$
\left|s_{n}-1\right|<\varepsilon \Longleftrightarrow \frac{1}{n}=\left|1-\frac{1}{n}-1\right|<\varepsilon \Longleftrightarrow n>\frac{1}{\varepsilon}
$$

Let N be the least integer (strictly) greater than $\frac{1}{\varepsilon}$. Then if $n \geq N$, we get

$$
\left|s_{n}-1\right|=\left|1-\frac{1}{n}-1\right|=\frac{1}{n} \leq \frac{1}{N}<\varepsilon
$$

as desired. Hence $\lim _{n \rightarrow \infty} s_{n}$ exists and equals 1.

Quiz \#3. Thursday, 7 Tuesday, 12 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges or not. [5]

Solution. We will use the (Basic!) Comparison Test. Note that when $n \geq 1, n 3^{n} \geq 3^{n}>$ 0 , so $0<\frac{1}{n 3^{n}} \leq \frac{1}{3^{n}}$. It follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges if $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ does. However, $\sum_{n=1}^{\infty} \frac{1}{3^{n}}=\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$ is a geometric series with common ratio $0<\frac{1}{3}<1$, so it converges.

Hence the series $\sum_{n=1}^{\infty} \frac{1}{n 3^{n}}$ converges.
Quiz \#4. Thursday, 14 Wednesday, 20 October, 2010 (10 minutes)

1. Determine whether the series $\sum_{n=1}^{\infty} \frac{\left(5^{n}\right)^{n}}{n!e^{n}}$ converges or not. [5]

Solution. We will use the Ratio Test. Note that since all terms are positive, we can drop the absolute value signs.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{\left(5^{n+1}\right)^{n+1}}{(n+1)!!^{n+1}}}{\frac{\left(5^{n}\right)^{n}}{n!e^{n}}} & =\lim _{n \rightarrow \infty} \frac{\frac{5^{(n+1)(n+1)}}{(n+1)!!^{n+1}}}{\frac{5^{n \cdot n}}{n!!^{n}}} \\
& =\lim _{n \rightarrow \infty} \frac{5^{n^{2}+2 n+1}}{(n+1)!e^{n+1}} \cdot \frac{n!e^{n}}{5^{n^{2}}} \\
& =\lim _{n \rightarrow \infty} \frac{5^{2 n+1}}{(n+1) e}
\end{aligned}
$$

Both the numerator and denominator go to infinity,
so we'll use l'Hôpital's Rule.
$=\lim _{x \rightarrow \infty} \frac{5^{2 x+1}}{(x+1) e}$
$=\lim _{x \rightarrow \infty} \frac{\ln (5) \cdot 5^{2 x+1} \cdot 2}{1 \cdot e}$
$=\frac{2 \ln (5)}{e} \lim _{x \rightarrow \infty} 5^{2 x+1}$
$=\frac{2 \ln (5)}{e} \cdot \infty=\infty>1$
It follows that the series $\sum_{n=1}^{\infty} \frac{\left(5^{n}\right)^{n}}{n!e^{n}}$ diverges.

Quiz \#5. Thursday, 21 October, 2010 (15 minutes)

1. For which values of a does the series $\sum_{n=0}^{\infty} \frac{1}{a^{2 n}+1}$ converge? [5]

Solution. This series converges if $|a|>1$ and diverges if $|a| \leq 1$.
If $|a|>1$, then $\frac{1}{|a|}<1$, so the geometric series $\sum_{n=0}^{\infty}\left(\frac{1}{|a|}\right)^{2 n}=\sum_{n=0}^{\infty} \frac{1}{|a|^{2 n}}$ converges. Note that $a^{2 n}>0$ and so $0<\frac{1}{a^{2 n}+1}<\frac{1}{|a|^{2 n}}=\left(\frac{1}{|a|}\right)^{2 n}$ for all n. It follows by the Comparison Test that $\sum_{n=0}^{\infty} \frac{1}{a^{2 n}+1}$ converges as well in this case.

If $|a| \leq 1$, then $|a|^{2 n} \leq 1$ for all n, so $\lim _{n \rightarrow \infty}|a|^{2 n}=\lim _{n \rightarrow \infty} a^{2 n} \leq 1$. It follows that $\lim _{n=0}^{\infty} \frac{1}{a^{2 n}+1}=\frac{1}{\left(\lim _{n \rightarrow \infty} a^{2 n}\right)+1} \geq \frac{1}{1+1}=\frac{1}{2}>0$, so the series $\sum_{n=0}^{\infty} \frac{1}{a^{2 n}+1}$ diverges by the Divergence Test. [5]

Quiz \#6. Thursday, 4 November, 2010 (10 minutes)

1. Find the Taylor series at $a=1$ of $f(x)=\ln (x)$. [5]

Solution. Observe that if $f(x)=\ln (x)$, then $f^{\prime}(x)=x^{-1}, f^{\prime \prime}(x)=(-1) x^{-2}, f^{\prime \prime \prime}(x)=$ $(-1)(-2) x^{-3}=(-1)^{2} 2!x^{-3}, f^{(4)}(x)=(-1)^{2} 2!(-3) x^{-4}=(-1)^{3} 3!x^{-4}, \ldots, f^{(n)}(x)=$ $(-1)^{n-1}(n-1)!x^{-n}, \ldots$ It follows that the Taylor series of $f(x)=\ln (x)$ at $a=1$ is:

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{f^{(n)}(1)}{n!}(x-1)^{n} & =\ln (1)+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)!1^{-n}}{n!}(x-1)^{n} \\
& =0+\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n} \\
& =\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}(x-1)^{n}
\end{aligned}
$$

Quiz \#7. Thursday, 11 November, 2010 (15 minutes)

1. Suppose $p(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$ is a polynomial of degree k. Show that the Taylor series at $a=0$ of $p(x)$ is equal to $p(x)$. [5]
Solution. Consider the derivatives of $p(x)$:

n	$p^{(n)}(x)$	$p^{(n)}(0)$
0	$a_{k} x^{k}+a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}$	$0!a_{0}$
1	$k a_{k} x^{k-1}+(k-1) a_{k-1} x^{k-2}+\cdots+2 a_{2} x+1 a_{1}$	$1!a_{1}$
2	$k(k-1) a_{k} x^{k-2}+(k-1)(k-2) a_{k-1} x^{k-2}+\cdots+2 \cdot 1 a_{2} x$	$2!a_{2}$
\vdots	\vdots	\vdots
$k-1$	$k(k-1) \cdots 3 \cdot 2 a_{k} x+(k-1)(k-2) \cdots 3 \cdot 2 \cdot 1 a_{k-1}$	$(k-1)!a_{k-1}$
k	$k(k-1) \cdots 3 \cdot 2 \cdot 1 a_{k}$	$k!a_{k}$
$k+1$	0	0
$k+2$	0	0
\vdots	\vdots	\vdots

Plugging this into Taylor's formula gives

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{p^{(n)}(0)}{n!} x^{n} & =\frac{p^{(0)}(0)}{0!}+\frac{p^{(1)}(0)}{1!} x+\frac{p^{(2)}(0)}{2!} x^{2}+\cdots+\frac{p^{(k)}(0)}{k!} x^{k}+\frac{p^{(k+1)}(0)}{(k+1)!} x^{k+1}+\cdots \\
& =\frac{0!a_{0}}{0!}+\frac{1!a_{1}}{1!} x+\frac{2!a_{2}}{2!} x^{2}+\cdots+\frac{k!a_{k}}{k!} x^{k}+\frac{0}{(k+1)!} x^{k+1}+\cdots \\
& =a_{0}+a_{1} x+a_{2} x+\cdots+a_{k} x^{k}+0+\cdots \\
& =p(x)
\end{aligned}
$$

as desired.
Quiz \#8. Thursday, 18 November, 2010 (15 minutes)

1. Suppose $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a series with radius of convergence $R>0$ and $[a, b] \subset$ $(-R, R)$. Why is $f(x)$ bounded on $[a, b]$?
Solution. $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a convergent power series on $(-R, R)$, so it is continuous on $(-R, R)$. Since $[a, b] \subset(-R, R)$, this means that $f(x)$ is continuous on $[a, b]$, and hence is bounded on $[a, b]$ by the max/min stuff from first-year calculus.

Quiz \#9. Thutrsday, 25 Tuesday, 30 November, 2010 (15 minutes)

1. Show that $\frac{1}{1+x^{2}}=1-x^{2}+x^{4}-x^{6}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$. [2]
2. Find the Taylor series at 0 of $\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t$. [3]

Solution to 1. It's a geometric series with first term 1 and common ratio $-x^{2}$:

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=1-x^{2}+x^{4}-x^{6}+\cdots=\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}
$$

Solution to 2. We can integrate and differentiate power series term-by-term (within the radius of convergence), so:

$$
\begin{aligned}
\arctan (x) & =\int_{0}^{x} \frac{1}{1+t^{2}} d t \\
& =\int_{0}^{x}\left(1-t^{2}+t^{4}-t^{6}+\cdots\right) d t \\
& =\int_{0}^{x} 1 d t-\int_{0}^{x} t^{2} d t+\int_{0}^{x} t^{4} d t-\int_{0}^{x} t^{6} d t+\cdots \\
& =\left.t\right|_{0} ^{x}-\left.\frac{t^{3}}{3}\right|_{0} ^{x}+\left.\frac{t^{5}}{5}\right|_{0} ^{x}-\left.\frac{t^{7}}{7}\right|_{0} ^{x}+\cdots \\
& =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
\end{aligned}
$$

This is the Taylor series of $\arctan (x)$ at 0 by the uniqueness of Taylor series: any power series equal to a function on a non-trivial interval must be the function's Taylor series.

Quiz \#10. Thursday, 2 December, 2010 (15 minutes)

1. Recall that $\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots=\sum_{n=0}^{\infty} x^{n}$ for $x \in(-1,1)$. Show that the series cannot converge uniformly to $\frac{1}{1-x}$ over the whole interval $(-1,1)$.
Hint: $\frac{1}{1-x}$ has an asymptote at $x=1$.
Solution. For the series $\sum_{n=0}^{\infty} x^{n}$ to converge uniformly to $\frac{1}{1-x}$ over the whole interval $(-1,1)$ would mean, by definition, that for any $\varepsilon>0$, there is some N such that for all $n \geq N$ and all $x \in(-1,1),\left|\frac{1}{1-x}-\sum_{k=0}^{n} x^{k}\right|<\varepsilon$.

However, if we have any $\varepsilon>0$ and N whatsoever, and $x \in(-1,1), \sum_{k=0}^{N} x^{k}$ is bounded above by $\sum_{k=0}^{N} 1^{k}=\sum_{k=0}^{N} 1=N+1$. Since $\lim _{x \rightarrow 1^{-}} \frac{1}{1-x}=\infty$, we can find an $x<1$ close enough to 1 to ensure that $\frac{1}{1-x}>N+1+\varepsilon>\sum_{k=0}^{N} x^{k}+\varepsilon$, so that $\left|\frac{1}{1-x}-\sum_{k=0}^{n} x^{k}\right|>\varepsilon$.

Thus the definition of uniform convergence must fail if applied to the convergence of $\sum_{n=0}^{\infty} x^{n}$ to $\frac{1}{1-x}$ over the whole interval $(-1,1)$.

Quiz \#11. Thursday, 2 December, 2010 (15 minutes)

1. Suppose $\sum_{n=0}^{\infty} a_{n}$ converges absolutely. Show that $\sum_{n=0}^{\infty} a_{n} \cos (n x)$ converges for all x.

Solution. Since $|\cos (n x)| \leq 1$ for all $x,\left|a_{n} \cos (n x)\right| \leq\left|a_{n}\right|$ for all x and n. Since $\sum_{n=0}^{\infty} a_{n}$ converges absolutely, it follows by the Comparison Test that $\sum_{n=0}^{\infty} a_{n} \cos (n x)$ converges absolutely, and hence converges, for all x.

