
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2010

Solutions to Assignment #4

The integral form of the remainder of a Taylor series

In what follows, let us suppose that c is a real number and f(x) is a function such
that f (n)(x) is defined and continuous for all n ≥ 0 and for all x in some open interval I
containing c. Recall that for n ≥ 0, the Taylor polynomial of degree n of f(x) at c is

Tn(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n

=
n∑

k=0

f (k)(c)

k!
(x− c)k ,

and that the corresponding remainder term is Rn(x) = f(x)− Tn(x). In what follows, we
will assume that every x we encounter is in the interval I.

1. Use the Fundamental Theorem of Calculus to show that

R0(x) =

∫ x

c

f ′(t) dt . [1]

Solution. Since T0(x) = f(c),

∫ x

c

f ′(t) dt = f(x)− f(c) = f(x)− T0(x) = R0(x). �

Note: It follows from the definitions of Tn(x) and Rn(x) that

Rn+1(x) = f(x)− Tn+1(x)

= f(x)−
[
Tn(x) +

f (n+1)(c)

(n + 1)!
(x− c)n+1

]
= [f(x)− Tn(x)]− f (n+1)(c)

(n + 1)!
(x− c)n+1

= Rn(x)− f (n+1)(c)

(n + 1)!
(x− c)n+1

for all n ≥ 0. We will use this observation below.

2. Use the formula in 1 and integration by parts to show that

R1(x) =

∫ x

c

f ′′(t)(x− t) dt . [2]

Hint: Use the parts u = f ′(t) and v = t− x . . .
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Solution. We start with the integral in 1 and apply parts with u = f ′(t) and v = t− x,
so du = f ′′(t) and dv = dt.∫ x

a

f ′(t) dt = f ′(t)(t− x)|xc −
∫ x

c

f ′′(t)(t− x) dt

= f ′(x)(x− x)− f ′(c)(c− x) +

∫ x

c

f ′′(t)(x− t) dt

= f ′(c)(x− c) +

∫ x

c

f ′′(t)(x− t) dt

It follows that ∫ x

c

f ′′(t)(x− t) dt =

∫ x

c

f ′(t) dt− f ′(c)(x− c)

= R0(x)− f ′(c)(x− c) (By 1.)

= R1(x) (By the Note above.) ,

as desired. �

3. Use the formula in 2 and integration by parts to show that

R2(x) =
1

2

∫ x

c

f (3)(t)(x− t)2 dt . [2]

Solution. We start with the integral in 2 and apply parts with u = f ′′(t) and v =
1
2 (t− x)2, so du = f (3)(t) and dv = (t− x)dt.∫ x

c

f ′′(t)(x− t) dt = −
∫ x

c

f ′′(t)(t− x) dt

= −
(
f ′′(t)

2
(t− x)2

∣∣∣∣x
c

−
∫ x

c

f (3)(t)

2
(t− x)2 dt

)
= −

(
f ′′(x)

2
(x− x)2 − f ′′(c)

2
(c− x)2 −

∫ x

c

f (3)(t)

2
(t− x)2 dt

)
=

f ′′(c)

2
(x− c)2 +

∫ x

c

f (3)(t)

2
(x− t)2 dt

It follows that ∫ x

c

f (3)(t)

2
(x− t)2 dt =

∫ x

c

f ′′(t)(x− t) dt− f ′′(c)

2
(x− c)2

= R1(x)− f ′′(c)

2
(x− c)2 (By 2.)

= R2(x) (By the Note above.) ,

as desired. �
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4. Use induction to show that

Rn(x) =
1

n!

∫ x

c

f (n+1)(t)(x− t)n dt . [5]

Solution. As instructed, we will proceed by induction on n.

Base Step. (n = 0) We need to check that R0(x) =

∫ x

c

f (0+1)(t)

0!
(x− t)0 dt =

∫ x

c

f ′(t) dt.

This is just problem 1.

Induction Hypothesis. (n = k) Assume thatRk(x) =

∫ x

c

f (k+1)(t)

k!
(x− t)k dt.

Induction Step. (n = k + 1) By the Induction Hypothesis and the Note above,

Rk+1(x) =

∫ x

c

f (k+1)(t)

k!
(x− t)k dt− f (k+1)(c)

(k + 1)!
(x− c)k+1

We will now apply integration by parts to the integral

∫ x

c

f (k+2)(t)

(k + 1)!
(x − t)k+1 dt.

Bearing in mind that t is the variable of integration, the parts are:

u = (x− t)k+1 dv = f(k+2)(t)
(k+1)! dt

du = −(k + 1)(x− t)k dt v = f(k+1)(t)
(k+1)!

Here goes! ∫ x

c

f (k+2)(t)

(k + 1)!
(x− t)k+1 dt =

∫ x

c

u dv = uv|xa −
∫ x

c

v du

= (x− t)k+1 · f
(k+1)(t)

(k + 1)!

∣∣∣∣x
c

−
∫ x

c

f (k+1)(t)

(k + 1)!
· (−1)(k + 1)(x− t)k dt

=

[
0− f (k+1)(c)

(k + 1)!
(x− c)k+1

]
− (−1)

∫ x

c

f (k+1)(t)

k!
(x− t)k dt

=

∫ x

c

f (k+1)(t)

k!
(x− t)k dt− f (k+1)(c)

(k + 1)!
(x− c)k+1

Putting the two previous paragraphs together, we get

Rk+1(x) =

∫ x

c

f (k+1)(t)

k!
(x− t)k dt− f (k+1)(c)

(k + 1)!
(x− c)k+1

=

∫ x

c

f (k+2)(t)

(k + 1)!
(x− t)k+1 dt ,

as desired.

It follows by induction that Rn(x) =

∫ x

c

f (n+1)(t)

n!
(x− t)n dt for n ≥ 0. �
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