# Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis 

Trent University, Fall 2010
Solutions to Assignment \#4
The integral form of the remainder of a Taylor series
In what follows, let us suppose that $c$ is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and for all $x$ in some open interval $I$ containing $c$. Recall that for $n \geq 0$, the Taylor polynomial of degree $n$ of $f(x)$ at $c$ is

$$
\begin{aligned}
T_{n}(x) & =f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
\end{aligned}
$$

and that the corresponding remainder term is $R_{n}(x)=f(x)-T_{n}(x)$. In what follows, we will assume that every $x$ we encounter is in the interval $I$.

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0}(x)=\int_{c}^{x} f^{\prime}(t) d t
$$

Solution. Since $T_{0}(x)=f(c), \int_{c}^{x} f^{\prime}(t) d t=f(x)-f(c)=f(x)-T_{0}(x)=R_{0}(x)$.
Note: It follows from the definitions of $T_{n}(x)$ and $R_{n}(x)$ that

$$
\begin{aligned}
R_{n+1}(x) & =f(x)-T_{n+1}(x) \\
& =f(x)-\left[T_{n}(x)+\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{n+1}\right] \\
& =\left[f(x)-T_{n}(x)\right]-\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{n+1} \\
& =R_{n}(x)-\frac{f^{(n+1)}(c)}{(n+1)!}(x-c)^{n+1}
\end{aligned}
$$

for all $n \geq 0$. We will use this observation below.
2. Use the formula in $\mathbf{1}$ and integration by parts to show that

$$
R_{1}(x)=\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t
$$

Hint: Use the parts $u=f^{\prime}(t)$ and $v=t-x \ldots$

Solution. We start with the integral in $\mathbf{1}$ and apply parts with $u=f^{\prime}(t)$ and $v=t-x$, so $d u=f^{\prime \prime}(t)$ and $d v=d t$.

$$
\begin{aligned}
\int_{a}^{x} f^{\prime}(t) d t & =\left.f^{\prime}(t)(t-x)\right|_{c} ^{x}-\int_{c}^{x} f^{\prime \prime}(t)(t-x) d t \\
& =f^{\prime}(x)(x-x)-f^{\prime}(c)(c-x)+\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t \\
& =f^{\prime}(c)(x-c)+\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t & =\int_{c}^{x} f^{\prime}(t) d t-f^{\prime}(c)(x-c) \\
& =R_{0}(x)-f^{\prime}(c)(x-c) \quad \text { (By 1.) } \\
& =R_{1}(x) \quad \text { (By the Note above.) },
\end{aligned}
$$

as desired.
3. Use the formula in 2 and integration by parts to show that

$$
R_{2}(x)=\frac{1}{2} \int_{c}^{x} f^{(3)}(t)(x-t)^{2} d t
$$

Solution. We start with the integral in 2 and apply parts with $u=f^{\prime \prime}(t)$ and $v=$ $\frac{1}{2}(t-x)^{2}$, so $d u=f^{(3)}(t)$ and $d v=(t-x) d t$.

$$
\begin{aligned}
\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t & =-\int_{c}^{x} f^{\prime \prime}(t)(t-x) d t \\
& =-\left(\left.\frac{f^{\prime \prime}(t)}{2}(t-x)^{2}\right|_{c} ^{x}-\int_{c}^{x} \frac{f^{(3)}(t)}{2}(t-x)^{2} d t\right) \\
& =-\left(\frac{f^{\prime \prime}(x)}{2}(x-x)^{2}-\frac{f^{\prime \prime}(c)}{2}(c-x)^{2}-\int_{c}^{x} \frac{f^{(3)}(t)}{2}(t-x)^{2} d t\right) \\
& =\frac{f^{\prime \prime}(c)}{2}(x-c)^{2}+\int_{c}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{c}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t & =\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t-\frac{f^{\prime \prime}(c)}{2}(x-c)^{2} \\
& =R_{1}(x)-\frac{f^{\prime \prime}(c)}{2}(x-c)^{2} \quad(\text { By } 2 .) \\
& =R_{2}(x) \quad \text { (By the NoTE above.) }
\end{aligned}
$$

as desired.
4. Use induction to show that

$$
\begin{equation*}
R_{n}(x)=\frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(x-t)^{n} d t \tag{5}
\end{equation*}
$$

Solution. As instructed, we will proceed by induction on $n$.
Base Step. $(n=0)$ We need to check that $R_{0}(x)=\int_{c}^{x} \frac{f^{(0+1)}(t)}{0!}(x-t)^{0} d t=\int_{c}^{x} f^{\prime}(t) d t$. This is just problem 1.
Induction Hypothesis. $(n=k)$ Assume that $R_{k}(x)=\int_{c}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t$.
Induction Step. $(n=k+1)$ By the Induction Hypothesis and the Note above,

$$
R_{k+1}(x)=\int_{c}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(c)}{(k+1)!}(x-c)^{k+1}
$$

We will now apply integration by parts to the integral $\int_{c}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t$. Bearing in mind that $t$ is the variable of integration, the parts are:

$$
\begin{array}{cc}
u=(x-t)^{k+1} & d v=\frac{f^{(k+2)}(t)}{(k+1)!} d t \\
d u=-(k+1)(x-t)^{k} d t & v=\frac{f^{(k+1)}(t)}{(k+1)!}
\end{array}
$$

Here goes!

$$
\begin{aligned}
& \int_{c}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t=\int_{c}^{x} u d v=\left.u v\right|_{a} ^{x}-\int_{c}^{x} v d u \\
= & \left.(x-t)^{k+1} \cdot \frac{f^{(k+1)}(t)}{(k+1)!}\right|_{c} ^{x}-\int_{c}^{x} \frac{f^{(k+1)}(t)}{(k+1)!} \cdot(-1)(k+1)(x-t)^{k} d t \\
= & {\left[0-\frac{f^{(k+1)}(c)}{(k+1)!}(x-c)^{k+1}\right]-(-1) \int_{c}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t } \\
= & \int_{c}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(c)}{(k+1)!}(x-c)^{k+1}
\end{aligned}
$$

Putting the two previous paragraphs together, we get

$$
\begin{aligned}
R_{k+1}(x) & =\int_{c}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(c)}{(k+1)!}(x-c)^{k+1} \\
& =\int_{c}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t
\end{aligned}
$$

as desired.
It follows by induction that $R_{n}(x)=\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t$ for $n \geq 0$.

