Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2010
Solutions to Assignment #4
The integral form of the remainder of a Taylor series
In what follows, let us suppose that ¢ is a real number and f(z) is a function such

that f(")(z) is defined and continuous for all n > 0 and for all  in some open interval T
containing c. Recall that for n > 0, the Taylor polynomial of degree n of f(x) at ¢ is
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and that the corresponding remainder term is R, (x) = f(z) — T,,(z). In what follows, we
will assume that every & we encounter is in the interval 1.

1. Use the Fundamental Theorem of Calculus to show that

Rofo) = [ “pwyde. 1

SOLUTION. Since Ty(z) = f(c), /m f@)dt = f(x) — f(c) = f(z) — To(z) = Ro(x). W

NoTE: It follows from the definitions of T;,(z) and R, (z) that
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for all n > 0. We will use this observation below.

2. Use the formula in 1 and integration by parts to show that

Rio) = [ Pt de. (2

Hint: Use the parts u = f'(t) and v =t —x ...
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SOLUTION. We start with the integral in 1 and apply parts with « = f'(¢) and v =t — «x,
so du = f(t) and dv = dt.

/:f’(t)dt= P - ) II—/xf”t t

= f'(x)(z —z) — f(c)(c—x) / ") (x—t)d
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It follows that

/ Yz —t)dt = f’ tydt — f'(c)(x —c)
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= Ry(x) (By the NOTE above.),

as desired. W

3. Use the formula in 2 and integration by parts to show that
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SOLUTION. We start with the integral in 2 and apply parts with w = f”(t) and v =
1t —2)% so du= f®(t) and dv = (t — z)dt.
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It follows that
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= Rao(x) (By the NOTE above.),

as desired. H



4. Use induction to show that
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SOLUTION. As instructed, we will proceed by induction on n.
(0+1) T
Base Step. (n = 0) We need to check that Ry(x / i U )0 dt = / f(t)dt
This is just problem 1. ‘
f(k+1)
Induction Hypothesis. (n = k) Assume that Ry (x / (z —t)* dt.

Induction Step. (n = k + 1) By the Induction Hypothesis and the NOTE above,
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We will now apply integration by parts to the integral W(a} — )" dt.

Bearing in mind that ¢ is the variable of integration, the parts are:
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Here goes!
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Putting the two previous paragraphs together, we get
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as desired.
(n+1)
It follows by induction that R, ( / f —t)"dt forn>0. R
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