Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2010

Solutions to Assignment \#3

A slice of π

1. Verify that $\sum_{n=0}^{\infty} \frac{1}{16 n^{2}+16 n+3}$ converges absolutely. [4]

Solution. Observe that the terms $\frac{1}{16 n^{2}+16 n+3}$ are all positive. Since $16 n^{2}+16 n+3 \geq$ $16 n^{2} \geq n^{2}$ for $n \geq 1$, we have

$$
\frac{1}{16 n^{2}+16 n+3} \leq \frac{1}{16 n^{2}} \leq \frac{1}{n^{2}}
$$

for $n \geq 1$ as well. Hence $\sum_{n=1}^{\infty} \frac{1}{16 n^{2}+16 n+3}$ converges by comparison with the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. (This series, in turn, converges by the p-test, among other possibilities.) Thus $\sum_{n=0}^{\infty} \frac{1}{16 n^{2}+16 n+3}=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{1}{16 n^{2}+16 n+3}$ must converge, too.
2. Show that $\sum_{n=0}^{\infty} \frac{1}{16 n^{2}+16 n+3}=\frac{\pi}{4}$. [6]

Hint: Start with the Taylor series at 0 of $\arctan (x)$ and use the fact that $\arctan (1)=\frac{\pi}{4}$. You'll need to do a little algebra, too.

Solution. Recall from class - or wherever! - that the Taylor series about 0 of $\arctan (x)$ is

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots,
$$

and converges for $x \in(-1,1]$. Since $\tan (\pi / 4)=1$, it follows that:

$$
\frac{\pi}{4}=\arctan (1)=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

We will consolidate each pair of successive terms of this series:

$$
\begin{aligned}
\frac{\pi}{4} & =\left(1-\frac{1}{3}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{9}-\frac{1}{11}\right)+\cdots \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{2(2 k)+1}-\frac{1}{2(2 k+1)+1}\right) \\
& =\sum_{k=0}^{\infty}\left(\frac{1}{4 k+1}-\frac{1}{4 k+3}\right) \\
& =\sum_{k=0}^{\infty} \frac{(4 k+3)-(4 k+1)}{(4 k+1)(4 k+3)} \\
& =\sum_{k=0}^{\infty} \frac{2}{16 k^{2}+16 k+3} \\
& =2 \sum_{k=0}^{\infty} \frac{1}{16 k^{2}+16 k+3}
\end{aligned}
$$

It follows that $\sum_{n=0}^{\infty} \frac{1}{16 n^{2}+16 n+3}=\frac{1}{2} \cdot \frac{\pi}{4}=\frac{\pi}{8}$. [Oops! My bad!]

