Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2010

Solutions to Assignment #3

A slice of 7
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1602 + 160 + 3 converges absolutely. [4]

1. Verify that Z
n=0

SOLUTION. Observe that the terms m are all positive. Since 16n? + 16n + 3 >
16n? > n? for n > 1, we have
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Hint: Start with the Taylor series at 0 of arctan(x) and use the fact that arctan(1) = 7.
You’ll need to do a little algebra, too.

SOLUTION. Recall from class — or wherever! — that the Taylor series about 0 of arctan(x)
is
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and converges for x € (—1,1]. Since tan(w/4) = 1, it follows that:
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We will consolidate each pair of successive terms of this series:
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g. [Oops! My bad!] B



