Mathematics 3790H - Analysis I: Introduction to analysis

Trent University, Fall 2010
Solutions to Assignment \#2

Cesàro Salad?

Ernesto Cesàro (1859-1906) was an Italian mathematician who worked in the field of differential geometry. Along the way he came up with some interesting ideas about the convergence of sequences and series.

1. A sequence $\left\{t_{n}\right\}$ is said to be Cesàro-summable if $\lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+t_{3}+\cdots+t_{n}}{n}$ exists.

Show that any convergent sequence is Cesàro-summable. [4]
Solution. Suppose $\lim _{n \rightarrow \infty} t_{n}=\tau$. We will show that $\lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+t_{3}+\cdots+t_{n}}{n}=\tau$ as well.

Suppose $\varepsilon>0$ is given. Since $\lim _{n \rightarrow \infty} t_{n}=\tau$, there is an N such that for all $n \geq$ $N,\left|t_{n}-\tau\right|<\frac{\varepsilon}{3}$. Choose $M>N$ such that both $\left|\frac{t_{1}+t_{2}+t_{3}+\cdots+t_{N-1}}{M}\right|<\frac{\varepsilon}{3}$ and $\left|\frac{(N-1) \tau}{M}\right|<\frac{\varepsilon}{3}$. Now suppose $m \geq M>N$. Then

$$
\begin{aligned}
&\left|\frac{t_{1}+t_{2}+t_{3}+\cdots+t_{m}}{m}-\tau\right| \\
&=\left|\frac{t_{1}+t_{2}+t_{3}+\cdots+t_{N-1}}{m}+\frac{t_{N}+t_{N+1}+\cdots+t_{m}}{m}-\tau\right| \\
& \leq\left|\frac{t_{1}+t_{2}+t_{3}+\cdots+t_{N-1}}{m}\right|+\left|\frac{t_{N}+t_{N+1}+\cdots+t_{m}}{m}-\tau\right| \\
&<\frac{\varepsilon}{3}+\left|\frac{t_{N}+t_{N+1}+\cdots+t_{m}-m \tau}{m}\right| \\
&= \frac{\varepsilon}{3}+\left|\frac{\left.t_{N}-\tau\right)+\left(t_{N+1}-\tau\right)+\cdots+\left(t_{m}-\tau\right)+(N-1) \tau}{m}\right| \\
& \leq \frac{\varepsilon}{3}+\frac{\left|t_{N}-\tau\right|+\left|t_{N+1}-\tau\right|+\cdots+\left|t_{m}-\tau\right|}{m}+\left|\frac{(N-1) \tau}{m}\right| \\
&<\frac{\varepsilon}{3}+\frac{(m-N+1)}{m} \cdot \frac{\varepsilon}{3}+\left|\frac{(N-1) \tau}{M}\right| \\
&<\frac{\varepsilon}{3}+\frac{m}{m} \cdot \frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

Thus, by the $\varepsilon-N$ definition of limits, $\lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+t_{3}+\cdots+t_{n}}{n}=\tau$, as desired.

Bonus: Is a Cesàro-summable sequence necessarily convergent? Prove it is or give a counterexample. [1]

Solution. A Cesàro-summable sequence is not necessarily convergent. For a cheap counterexample, consider the sequence $t_{n}=(-1)^{n+1}$, i.e. $1,-1,1,-1, \ldots$ This sequence does not converge, since the terms alternate between -1 and 1 , but $\lim _{n \rightarrow \infty} \frac{1-1+1-\cdots+(-1)^{n+1}}{n}=0$ because $0 \leq \frac{1-1+1-\cdots+(-1)^{n+1}}{n} \leq \frac{1}{n}$.

For questions $\mathbf{2}$ and 3, you may assume that the following result is true:
Stolz-Cesàro Theorem. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of real numbers such that $\left\{b_{n}\right\}$ is increasing, $b_{n}>0$ for all $n, \lim _{n \rightarrow \infty} b_{n}=\infty$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ exists or is equal to $\pm \infty$. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$.

This theorem is in some measure a generalization both of the notion of Cesàro summation (see 2 below) and of l'Hôpital's Rule.
2. Let $p \in \mathbb{R}, p \neq-1$. Using the Stolz-Cesàro Theorem, compute the limit

$$
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\cdots+n^{p}}{n^{p+1}}
$$

Solution. First, suppose $p>-1$, so $p+1>0$ and $\lim _{n \rightarrow \infty} n^{p+1}=\infty$. We will apply the Stolz-Cesàro Theorem with $a_{n}=1^{p}+2^{p}+\ldots+n^{p}$ and $b_{n}=n^{p+1}$:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\cdots+n^{p}}{n^{p+1}} & =\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{(n+1)^{p+1}-n^{p+1}} \\
& =\lim _{n \rightarrow \infty} \frac{(n+1)^{p}}{(n+1)^{p+1}-n^{p+1}} \cdot \frac{1 /(n+1)^{p}}{1 /(n+1)^{p}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+1)-n\left(\frac{n}{n+1}\right)^{p}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+1)-n\left(1+\frac{-1}{n+1}\right)^{p}}
\end{aligned}
$$

Here we use the Generalized Binomial Theorem to expand the remaining power:

$$
\left(1-\frac{1}{n+1}\right)^{p}=\sum_{k=0}^{\infty}\binom{p}{k} \frac{(-1)^{k}}{(n+1)^{k}}=1-\frac{p}{1!} \cdot \frac{1}{n+1}+\frac{p(p-1)}{2!} \cdot \frac{1}{(n+1)^{2}}-\cdots
$$

Thus

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\cdots+n^{p}}{n^{p+1}} & =\lim _{n \rightarrow \infty} \frac{1}{(n+1)-n\left(1+\frac{-1}{n+1}\right)^{p}} \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+1)-n\left(1-\frac{p}{1!} \cdot \frac{1}{n+1}+\frac{p(p-1)}{2!} \cdot \frac{1}{(n+1)^{2}}-\cdots\right)} \\
& =\lim _{n \rightarrow \infty} \frac{1}{n+1-n+p \cdot \frac{n}{n+1}-\frac{p(p-1)}{2} \cdot \frac{n}{(n+1)^{2}}+\cdots} \\
& =\frac{1}{\lim _{n \rightarrow \infty}\left(1+p \cdot \frac{n}{n+1}-\frac{p(p-1)}{2} \cdot \frac{n}{(n+1)^{2}}+\cdots\right)} \\
& =\frac{1}{1+p \cdot 1-\frac{p(p-1)}{2} \cdot 0+\cdots} \\
& =\frac{1}{1+p-0+0-\cdots}=\frac{1}{p+1},
\end{aligned}
$$

so we have computed the desired limit, at least when $p>-1$. Whew! (We swept a little something under the rug along the way. What was it?)

Second, suppose $p<-1$, so $p+1<0$. In this case, $\lim _{n \rightarrow \infty} n^{p+1}=0 \neq \infty$ (Why?), so we can't apply the Stolz-Cesàro Theorem as we did in the previous case. Moreover, $\frac{1}{p+1}$ can't be the limit in this case because it is negative when $p<-1$, and $\frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}>0$ for all $n \geq 1$. In fact, when $p<-1, \lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}=\infty$. To see this, observe that

$$
\lim _{n \rightarrow \infty}\left(1^{p}+2^{p}+\ldots+n^{p}\right)=\lim _{n \rightarrow \infty}\left(\frac{1}{1^{|p|}}+\frac{1}{2^{|p|}}+\cdots+\frac{1}{n^{|p|}}\right)
$$

exists when $p<-1$, because the series $\sum_{k=1}^{\infty} \frac{1}{k^{|p|}}$ converges (to some positive number) by the p-Test when $|p|>1$. On the other hand, since $\lim _{n \rightarrow \infty} n^{p+1}=0$, we must have $\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}=\infty$.

Bonus: Use 2 to compute $\lim _{n \rightarrow \infty} \sqrt[n]{n!}$. [1]
Solution. I'm too lazy to write it out, but what you really want is to use the method used to do $\mathbf{3}$ below.
3. Let $\left\{c_{n}\right\}$ be a sequence of positive real numbers. Use the Stolz-Cesàro Theorem to show that if $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$ exists or is $\pm \infty$, then $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$. [4]
Solution. First, a small sanity check: if $\left\{c_{n}\right\}$ is a sequence of positive real numbers, $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$ can't be $-\infty$, so we only need to consider the possibilities that the limit exists (and is ≥ 0 to boot) or is $+\infty$.

Suppose, then, that $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$ exists or is $+\infty$. Then

$$
\ln \left(\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}\right)=\lim _{n \rightarrow \infty} \ln \left(\frac{c_{n+1}}{c_{n}}\right)
$$

since $\ln (x)$ is an increasing and continuous function for $x>0$. We will show that

$$
\lim _{n \rightarrow \infty} \ln \left(\frac{c_{n+1}}{c_{n}}\right)=\lim _{n \rightarrow \infty} \ln \left(\sqrt[n]{c_{n}}\right)
$$

with the help of the Stolz-Cesàro Theorem.
Let $a_{n}=\ln \left(c_{n}\right)$ and $b_{n}=n$. Then b_{n} clearly satisfies the required hypotheses in the Stolz-Cesàro Theorem, so

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln \left(c_{n}\right)}{n} & =\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(c_{n+1}\right)-\ln \left(c_{n}\right)}{(n+1)-n} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(c_{n+1} / c_{n}\right)}{1} \\
& =\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}
\end{aligned}
$$

It follows that

$$
\ln \left(\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}\right)=\lim _{n \rightarrow \infty} \ln \left(\frac{c_{n+1}}{c_{n}}\right)=\lim _{n \rightarrow \infty} \frac{\ln \left(c_{n}\right)}{n}=\lim _{n \rightarrow \infty} \ln \left(\sqrt[n]{c_{n}}\right)
$$

so we must have $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}$, as desired.

