
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2010

Solutions to Assignment #2

Cesàro Salad?

Ernesto Cesàro (1859–1906) was an Italian mathematician who worked in the field of
differential geometry. Along the way he came up with some interesting ideas about the
convergence of sequences and series.

1. A sequence {tn} is said to be Cesàro-summable if lim
n→∞

t1 + t2 + t3 + · · ·+ tn
n

exists.

Show that any convergent sequence is Cesàro-summable. [4]

Solution. Suppose lim
n→∞

tn = τ . We will show that lim
n→∞

t1 + t2 + t3 + · · ·+ tn
n

= τ as

well.
Suppose ε > 0 is given. Since lim

n→∞
tn = τ , there is an N such that for all n ≥

N , |tn − τ | <
ε

3
. Choose M > N such that both

∣∣∣∣ t1 + t2 + t3 + · · ·+ tN−1
M

∣∣∣∣ < ε

3
and∣∣∣∣ (N − 1) τ

M

∣∣∣∣ < ε

3
. Now suppose m ≥M > N . Then

∣∣∣∣ t1 + t2 + t3 + · · ·+ tm
m

− τ
∣∣∣∣

=

∣∣∣∣ t1 + t2 + t3 + · · ·+ tN−1
m

+
tN + tN+1 + · · ·+ tm

m
− τ
∣∣∣∣

≤
∣∣∣∣ t1 + t2 + t3 + · · ·+ tN−1

m

∣∣∣∣+

∣∣∣∣ tN + tN+1 + · · ·+ tm
m

− τ
∣∣∣∣

<
ε

3
+

∣∣∣∣ tN + tN+1 + · · ·+ tm −mτ
m

∣∣∣∣
=
ε

3
+

∣∣∣∣ (tN − τ) + (tN+1 − τ) + · · ·+ (tm − τ) + (N − 1) τ

m

∣∣∣∣
≤ ε

3
+
|tN − τ |+ |tN+1 − τ |+ · · ·+ |tm − τ |

m
+

∣∣∣∣ (N − 1) τ

m

∣∣∣∣
<
ε

3
+

(m−N + 1)

m
· ε

3
+

∣∣∣∣ (N − 1) τ

M

∣∣∣∣
<
ε

3
+
m

m
· ε

3
+
ε

3
= ε .

Thus, by the ε−N definition of limits, lim
n→∞

t1 + t2 + t3 + · · ·+ tn
n

= τ , as desired. �
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Bonus: Is a Cesàro-summable sequence necessarily convergent? Prove it is or give a
counterexample. [1]

Solution. A Cesàro-summable sequence is not necessarily convergent. For a cheap coun-
terexample, consider the sequence tn = (−1)n+1, i.e. 1, −1, 1, −1, . . . This sequence does

not converge, since the terms alternate between −1 and 1, but lim
n→∞

1−1+1−···+(−1)n+1

n = 0

because 0 ≤ 1−1+1−···+(−1)n+1

n ≤ 1
n . �

For questions 2 and 3, you may assume that the following result is true:

Stolz–Cesàro Theorem. Let {an} and {bn} be two sequences of real numbers

such that {bn} is increasing, bn > 0 for all n, lim
n→∞

bn =∞, and lim
n→∞

an+1 − an
bn+1 − bn

exists or is equal to ±∞. Then lim
n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

.

This theorem is in some measure a generalization both of the notion of Cesàro summation
(see 2 below) and of l’Hôpital’s Rule.

2. Let p ∈ R, p 6= −1. Using the Stolz–Cesàro Theorem, compute the limit

lim
n→∞

1p + 2p + · · ·+ np

np+1
. [3]

Solution. First, suppose p > −1, so p + 1 > 0 and lim
n→∞

np+1 = ∞. We will apply the

Stolz–Cesàro Theorem with an = 1p + 2p + ...+ np and bn = np+1:

lim
n→∞

1p + 2p + · · ·+ np

np+1
= lim

n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

= lim
n→∞

(n+ 1)p

(n+ 1)p+1 − np+1

= lim
n→∞

(n+ 1)p

(n+ 1)p+1 − np+1
· 1/(n+ 1)p

1/(n+ 1)p

= lim
n→∞

1

(n+ 1)− n
(

n
n+1

)p
= lim

n→∞

1

(n+ 1)− n
(

1 + −1
n+1

)p
Here we use the Generalized Binomial Theorem to expand the remaining power:

(
1− 1

n+ 1

)p

=

∞∑
k=0

(
p

k

)
(−1)k

(n+ 1)k
= 1− p

1!
· 1

n+ 1
+
p(p− 1)

2!
· 1

(n+ 1)2
− · · ·
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Thus

lim
n→∞

1p + 2p + · · ·+ np

np+1
= lim

n→∞

1

(n+ 1)− n
(

1 + −1
n+1

)p
= lim

n→∞

1

(n+ 1)− n
(

1− p
1! ·

1
n+1 + p(p−1)

2! · 1
(n+1)2 − · · ·

)
= lim

n→∞

1

n+ 1− n+ p · n
n+1 −

p(p−1)
2 · n

(n+1)2 + · · ·

=
1

limn→∞

(
1 + p · n

n+1 −
p(p−1)

2 · n
(n+1)2 + · · ·

)
=

1

1 + p · 1− p(p−1)
2 · 0 + · · ·

=
1

1 + p− 0 + 0− · · ·
=

1

p+ 1
,

so we have computed the desired limit, at least when p > −1. Whew! (We swept a little
something under the rug along the way. What was it?)

Second, suppose p < −1, so p + 1 < 0. In this case, lim
n→∞

np+1 = 0 6= ∞ (Why?), so

we can’t apply the Stolz–Cesàro Theorem as we did in the previous case. Moreover, 1
p+1

can’t be the limit in this case because it is negative when p < −1, and 1p+2p+...+np

np+1 > 0 for

all n ≥ 1. In fact, when p < −1, lim
n→∞

1p + 2p + ...+ np

np+1
=∞. To see this, observe that

lim
n→∞

(1p + 2p + ...+ np) = lim
n→∞

(
1

1|p|
+

1

2|p|
+ · · ·+ 1

n|p|

)

exists when p < −1, because the series

∞∑
k=1

1

k|p|
converges (to some positive number)

by the p-Test when |p| > 1. On the other hand, since lim
n→∞

np+1 = 0, we must have

lim
n→∞

1p + 2p + ...+ np

np+1
=∞. �

Bonus: Use 2 to compute lim
n→∞

n
√
n!. [1]

Solution. I’m too lazy to write it out, but what you really want is to use the method
used to do 3 below. �
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3. Let {cn} be a sequence of positive real numbers. Use the Stolz–Cesàro Theorem to

show that if lim
n→∞

cn+1

cn
exists or is ±∞, then lim

n→∞
n
√
cn = lim

n→∞

cn+1

cn
. [4]

Solution. First, a small sanity check: if {cn} is a sequence of positive real numbers,

lim
n→∞

cn+1

cn
can’t be −∞, so we only need to consider the possibilities that the limit exists

(and is ≥ 0 to boot) or is +∞.

Suppose, then, that lim
n→∞

cn+1

cn
exists or is +∞. Then

ln

(
lim

n→∞

cn+1

cn

)
= lim

n→∞
ln

(
cn+1

cn

)
since ln(x) is an increasing and continuous function for x > 0. We will show that

lim
n→∞

ln

(
cn+1

cn

)
= lim

n→∞
ln ( n
√
cn)

with the help of the Stolz–Cesàro Theorem.
Let an = ln (cn) and bn = n. Then bn clearly satisfies the required hypotheses in the

Stolz–Cesàro Theorem, so

lim
n→∞

ln (cn)

n
= lim

n→∞

an
bn

= lim
n→∞

an+1 − an
bn+1 − bn

= lim
n→∞

ln (cn+1)− ln (cn)

(n+ 1)− n

= lim
n→∞

ln (cn+1/cn)

1

= lim
n→∞

cn+1

cn
.

It follows that

ln

(
lim

n→∞

cn+1

cn

)
= lim

n→∞
ln

(
cn+1

cn

)
= lim

n→∞

ln (cn)

n
= lim

n→∞
ln ( n
√
cn) ,

so we must have lim
n→∞

cn+1

cn
= lim

n→∞
n
√
cn, as desired. �
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