Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2010

Solutions to Assignment #2
Cesaro Salad?
Ernesto Cesaro (1859-1906) was an Italian mathematician who worked in the field of

differential geometry. Along the way he came up with some interesting ideas about the
convergence of sequences and series.
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1. A sequence {t,} is said to be Cesdaro-summable if lim exists.
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Show that any convergent sequence is Cesaro-summable. [4/
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Suppose € > 0 is given. Since lim ¢, = 7, there is an N such that for all n >
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Thus, by the € — N definition of limits, lim 1ttrtist A in =7, as desired. B
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Bonus: Is a Cesaro-summable sequence necessarily convergent? Prove it is or give a
counterexample. [1/

SOLUTION. A Cesaro-summable sequence is not necessarily convergent. For a cheap coun-

terexample, consider the sequence t,, = (—1)"*!, 4d.e. 1, —1, 1, —1, ... This sequence does
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not converge, since the terms alternate between —1 and 1, but lim
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For questions 2 and 3, you may assume that the following result is true:

Stolz—Cesaro Theorem. Let {a,} and {b,} be two sequences of real numbers

a —a
such that {b,} is increasing, b, > 0 for all n, lim b, = oo, and lim ol Tn
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n—o0 b, n—oo bpi1 — by,

This theorem is in some measure a generalization both of the notion of Cesaro summation
(see 2 below) and of I’'Hopital’s Rule.

2. Let p € R, p # —1. Using the Stolz—Cesaro Theorem, compute the limit
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SOLUTION. First, suppose p > —1,so p+1 > 0 and lim nPT! = co. We will apply the
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Stolz—Cesaro Theorem with a,, = 17 + 2P + ... + n? and b,, = nPt!:
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Here we use the Generalized Binomial Theorem to expand the remaining power:
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Thus
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so we have computed the desired limit, at least when p > —1. Whew! (We swept a little
something under the rug along the way. What was it?)
Second, suppose p < —1, so p+ 1 < 0. In this case, lim nP*! = 0 # oo (Why?), so
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we can’t apply the Stolz—Cesaro Theorem as we did in the previous case. Moreover, zﬁ

can’t be the limit in this case because it is negative when p < —1, and W > 0 for
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all n > 1. In fact, when p < —1,

1 1 1
lim (17 +2P 4+ ...+ nP) = lim <—+ 4t >

n—00 n—oo \ 1lp 21p| nlpl

=1

exists when p < —1, because the series g Il converges (to some positive number)
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by the p-Test when |p| > 1. On the other hand, since lim nP*! = 0, we must have
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Bonus: Use 2 to compute lim V/n!. [1]
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SOLUTION. I'm too lazy to write it out, but what you really want is to use the method
used to do 3 below. B



3. Let {c,} be a sequence of positive real numbers. Use the Stolz—Cesaro Theorem to
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show that if lim L exists or is +o00, then lim /¢, = lim —=%. [4]
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SOLUTION. First, a small sanity check: if {c,} is a sequence of positive real numbers,
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(and is > 0 to boot) or is +oo.
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can’t be —o0, so we only need to consider the possibilities that the limit exists

Suppose, then, that lim L exists or is +00. Then
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since In(x) is an increasing and continuous function for z > 0. We will show that

lim In (CnH) = lim In(/c,)
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with the help of the Stolz—Cesaro Theorem.
Let a, = In(¢y,) and b, = n. Then b,, clearly satisfies the required hypotheses in the
Stolz—Cesaro Theorem, so
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It follows that
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