Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2010
Solutions to Assignment \#1

Euler's Constant

Euler's constant* is the real number γ defined by:

$$
\gamma=\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]=\lim _{n \rightarrow \infty}\left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n)\right]
$$

Since $\ln (n)=\int_{1}^{n} \frac{1}{x} d x$, we can think of γ as a sum of areas: for each $k \geq 1$, consider the area of the rectangle of height $\frac{1}{k}$ with base the interval $[k, k+1]$ with the part below the curve $y=\frac{1}{x}$ taken away.

Your task is to show that the definition of Euler's constant makes sense.

1. Show that $\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]$ exists. [7]

Hint: For each rectangle of height $\frac{1}{k}$ with base the interval $[k, k+1]$ take away the part that lies below $y=\frac{1}{k+1}$.
Solution. This is a little easier if we redefine how we get γ just a little bit.
Claim: $\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n-1} \frac{1}{k}\right)-\ln (n)\right]=\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]$

[^0]Proof: Note that

$$
\left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n)\right]-\left[1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln (n)\right]=\frac{1}{n}
$$

and $\frac{1}{n} \rightarrow 0$ as $n \rightarrow \infty$, so $\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n-1} \frac{1}{k}\right)-\ln (n)\right]=\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n} \frac{1}{k}\right)-\ln (n)\right]$, so long as either limit exists. (This is much like the Cauchy condition for the convergence of sequences.)

With the claim in hand, we can really think of γ as a sum of areas:

$$
\begin{aligned}
\left(\sum_{k=1}^{n-1} \frac{1}{k}\right)-\ln (n) & =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\ln (n) \\
& =1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}-\int_{1}^{n} \frac{1}{x} d x \\
& =\left(1-\int_{1}^{2} \frac{1}{x} d x\right)+\left(\frac{1}{2}-\int_{2}^{3} \frac{1}{x} d x\right)+\cdots+\left(\frac{1}{n-1}-\int_{n-1}^{n} \frac{1}{x} d x\right)
\end{aligned}
$$

See the picture below of the first three of the areas in question.

It should be clear that each of the areas $\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x$ is positive, and so, by the Monotone Convergence Theorem, all we need to do is show that their sum is bounded above to ensure that

$$
\lim _{n \rightarrow \infty}\left[\left(\sum_{k=1}^{n-1} \frac{1}{k}\right)-\ln (n)\right]=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n-1}\left(\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x\right)\right]
$$

exists.

Since $\frac{1}{x} \geq \frac{1}{k+1}$ on the interval [$\left.k, k+1\right]$, it follows that $\int_{k}^{k+1} \frac{1}{x} d x \geq \frac{1}{k+1}$ for each $k \geq 1$, and hence that $\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x \leq \frac{1}{k}-\frac{1}{k+1}$ for each $k \geq 1$. It follows that

$$
\sum_{k=1}^{n-1}\left(\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x\right) \leq \sum_{k=1}^{n-1}\left(\frac{1}{k}-\frac{1}{k+1}\right)=1-\frac{1}{n} \leq 1
$$

for all $n \geq 1$. (Note that the latter sum telescopes.)
It follows that the desired limit exists, and so γ is actually a well-defined constant.
2. Show that $\frac{1}{2} \leq \gamma \leq 1$. [3]

Solution. Since, as was noted above, 1 is an upper bound for the terms whose limit is γ, we have $\gamma \leq 1$. It remains to show that $\frac{1}{2} \leq \gamma$.

To see this, note that each area $\frac{1}{k}-\int_{k}^{k+1} \frac{1}{x} d x$ is a little less than that of the triangle with area $\frac{1}{2} \cdot 1 \cdot\left(\frac{1}{k}-\frac{1}{k+1}\right)$, as in the picture below:

It follows that for all $n \geq 1$,

$$
\gamma \geq \frac{1}{2}\left(1-\frac{1}{2}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots \frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\frac{1}{2}\left(1-\frac{1}{n+1}\right)
$$

and so we must have that $\gamma \geq \lim _{n \rightarrow \infty} \frac{1}{2}\left(1-\frac{1}{n+1}\right)=\frac{1}{2}(1-0)=\frac{1}{2}$, as desired.

[^0]: * It is traditionally denoted by γ and sometimes called the Euler-Mascheroni constant. In case you're curious, $\gamma=0.5772156649 \ldots$ It is unknown whether γ is rational or not.

