Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Fall 2010

Solutions to Assignment #1

Euler's Constant

Euler's constant^{*} is the real number γ defined by:

$$\gamma = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right] = \lim_{n \to \infty} \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n) \right]$$

Since $\ln(n) = \int_1^n \frac{1}{x} dx$, we can think of γ as a sum of areas: for each $k \ge 1$, consider the area of the rectangle of height $\frac{1}{k}$ with base the interval [k, k+1] with the part below the curve $y = \frac{1}{x}$ taken away.

Your task is to show that the definition of Euler's constant makes sense.

1. Show that
$$\lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right]$$
 exists. [7]

Hint: For each rectangle of height $\frac{1}{k}$ with base the interval [k, k+1] take away the part that lies below $y = \frac{1}{k+1}$.

Solution. This is a little easier if we redefine how we get γ just a little bit.

Claim:
$$\lim_{n \to \infty} \left[\left(\sum_{k=1}^{n-1} \frac{1}{k} \right) - \ln(n) \right] = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right]$$

^{*} It is traditionally denoted by γ and sometimes called the Euler-Mascheroni constant. In case you're curious, $\gamma = 0.5772156649...$ It is unknown whether γ is rational or not.

Proof: Note that

$$\left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n)\right] - \left[1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \ln(n)\right] = \frac{1}{n},$$

and $\frac{1}{n} \to 0$ as $n \to \infty$, so $\lim_{n \to \infty} \left[\left(\sum_{k=1}^{n-1} \frac{1}{k} \right) - \ln(n) \right] = \lim_{n \to \infty} \left[\left(\sum_{k=1}^{n} \frac{1}{k} \right) - \ln(n) \right]$, so long as either limit exists. (This is much like the Cauchy condition for the convergence of sequences.) \Box

With the claim in hand, we can really think of γ as a sum of areas:

$$\begin{pmatrix} \sum_{k=1}^{n-1} \frac{1}{k} \end{pmatrix} - \ln(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \ln(n)$$

= $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} - \int_{1}^{n} \frac{1}{x} dx$
= $\left(1 - \int_{1}^{2} \frac{1}{x} dx\right) + \left(\frac{1}{2} - \int_{2}^{3} \frac{1}{x} dx\right) + \dots + \left(\frac{1}{n-1} - \int_{n-1}^{n} \frac{1}{x} dx\right)$

See the picture below of the first three of the areas in question.

It should be clear that each of the areas $\frac{1}{k} - \int_{k}^{k+1} \frac{1}{x} dx$ is positive, and so, by the Monotone Convergence Theorem, all we need to do is show that their sum is bounded above to ensure that

$$\lim_{n \to \infty} \left[\left(\sum_{k=1}^{n-1} \frac{1}{k} \right) - \ln(n) \right] = \lim_{n \to \infty} \left[\sum_{k=1}^{n-1} \left(\frac{1}{k} - \int_k^{k+1} \frac{1}{x} \, dx \right) \right]$$

exists.

Since $\frac{1}{x} \ge \frac{1}{k+1}$ on the interval [k, k+1], it follows that $\int_k^{k+1} \frac{1}{x} dx \ge \frac{1}{k+1}$ for each $k \ge 1$, and hence that $\frac{1}{k} - \int_k^{k+1} \frac{1}{x} dx \le \frac{1}{k} - \frac{1}{k+1}$ for each $k \ge 1$. It follows that

$$\sum_{k=1}^{n-1} \left(\frac{1}{k} - \int_{k}^{k+1} \frac{1}{x} \, dx \right) \le \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n} \le 1 \,,$$

for all $n \ge 1$. (Note that the latter sum telescopes.)

It follows that the desired limit exists, and so γ is actually a well-defined constant.

2. Show that $\frac{1}{2} \leq \gamma \leq 1$. [3]

SOLUTION. Since, as was noted above, 1 is an upper bound for the terms whose limit is γ , we have $\gamma \leq 1$. It remains to show that $\frac{1}{2} \leq \gamma$.

To see this, note that each area $\frac{1}{k} - \int_{k}^{k+1} \frac{1}{x} dx$ is a little less than that of the triangle with area $\frac{1}{2} \cdot 1 \cdot \left(\frac{1}{k} - \frac{1}{k+1}\right)$, as in the picture below:

It follows that for all $n \ge 1$,

$$\gamma \ge \frac{1}{2} \left(1 - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - \frac{1}{3} \right) + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{4} \right) + \dots + \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{2} \left(1 - \frac{1}{n+1} \right) ,$$

and so we must have that $\gamma \ge \lim_{n \to \infty} \frac{1}{2} \left(1 - \frac{1}{n+1} \right) = \frac{1}{2} \left(1 - 0 \right) = \frac{1}{2}$, as desired.