Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2010
 Assignment \#5
 Alternatives?
 Due: Friday, 26 November, 2010

Recall that the harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$, diverges, while its close relation, the alternating harmonic series, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$, converges.

1. Determine whether the following relative of the harmonic series converges or diverges: $1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\cdots=\sum_{n=1}^{\infty} \frac{\beta(n)}{n}$, where $\beta: \mathbb{N}^{+} \rightarrow\{-1,1\}$ is given by $\beta(n)=\left\{\begin{array}{ll}+1 & n \neq 0(\bmod 3) \\ -1 & n=0(\bmod 3)\end{array} .[3]\right.$
2. Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\tau(n)}{n} x^{n}$, where $\tau: \mathbb{N}^{+} \rightarrow$ $\{-1,1\}$ is some function that assigns one of ± 1 to each $n>0$. [3]
3. Find an example of a function $\tau: \mathbb{N}^{+} \rightarrow\{-1,1\}$ which makes the interval of convergence of $\sum_{n=1}^{\infty} \frac{\tau(n)}{n} x^{n}$ be, respectively,
a. $(-R, R)$
b. $[-R, R)$
c. $(-R, R]$
d. $[-R, R]$
(where R is the radius of convergence from 2) or show that there is no such τ. [4]
Bonus. Determine, as best you can, whether the following relative of the harmonic series converges or diverges: $\sum_{n=1}^{\infty} \frac{\rho(n)}{n}$, where $\rho: \mathbb{N}^{+} \rightarrow\{-1,1\}$ randomly chooses one of ± 1 for each $n>0$, in such a way that $\lim _{n \rightarrow \infty} \frac{\rho(1)+\rho(2)+\cdots+\rho(n)}{n}=0$. (That is, the series is "alternating on average.") [1]
