Mathematics 3790H – Analysis I: Introduction to analysis TRENT UNIVERSITY, Fall 2010

Assignment #5 Alternatives? Due: Friday, 26 November, 2010

Recall that the harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$, diverges, while its close relation, the alternating harmonic series, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$, converges.

- 1. Determine whether the following relative of the harmonic series converges or diverges: $1 + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{7} + \frac{1}{8} - \frac{1}{9} + \dots = \sum_{n=1}^{\infty} \frac{\beta(n)}{n}, \text{ where } \beta : \mathbb{N}^+ \to \{-1, 1\} \text{ is given}$ by $\beta(n) = \begin{cases} +1 & n \neq 0 \pmod{3} \\ -1 & n = 0 \pmod{3} \end{cases}$. [3]
- **2.** Determine the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{\tau(n)}{n} x^n$, where $\tau : \mathbb{N}^+ \to \{-1, 1\}$ is some function that assigns one of ± 1 to each n > 0. [3]
- 3. Find an example of a function τ : N⁺ → {-1,1} which makes the interval of convergence of ∑_{n=1}[∞] (π/n) xⁿ be, respectively,
 a. (-R, R) b. [-R, R) c. (-R, R] d. [-R, R]

(where R is the radius of convergence from 2) or show that there is no such τ . [4]

Bonus. Determine, as best you can, whether the following relative of the harmonic series converges or diverges: $\sum_{n=1}^{\infty} \frac{\rho(n)}{n}$, where $\rho : \mathbb{N}^+ \to \{-1, 1\}$ randomly chooses one of ± 1 for each n > 0, in such a way that $\lim_{n \to \infty} \frac{\rho(1) + \rho(2) + \dots + \rho(n)}{n} = 0$. (That is, the series is "alternating on average.") [1]