Mathematics 3790H - Analysis I: Introduction to analysis
 Trent University, Fall 2010

Assignment \#4
Due on Thursday, 11 November, 2010.

The integral form of the remainder of a Taylor series*

In what follows, let us suppose that c is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and for all x in some open interval I containing c. Recall that for $n \geq 0$, the Taylor polynomial of degree n of $f(x)$ at c is

$$
\begin{aligned}
T_{n}(x) & =f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(c)}{k!}(x-c)^{k}
\end{aligned}
$$

and that the corresponding remainder term is $R_{n}(x)=f(x)-T_{n}(x)$. In what follows, we will assume that every x we encounter is in the interval I.

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0}(x)=\int_{c}^{x} f^{\prime}(t) d t
$$

2. Use the formula in $\mathbf{1}$ and integration by parts to show that

$$
R_{1}(x)=\int_{c}^{x} f^{\prime \prime}(t)(x-t) d t
$$

Hint: Use the parts $u=f^{\prime}(t)$ and $v=t-x \ldots$
3. Use the formula in $\mathbf{2}$ and integration by parts to show that

$$
R_{2}(x)=\frac{1}{2} \int_{c}^{x} f^{(3)}(t)(x-t)^{2} d t
$$

4. Use induction to show that

$$
R_{n}(x)=\frac{1}{n!} \int_{c}^{x} f^{(n+1)}(t)(x-t)^{n} d t
$$

[^0]
[^0]: * Theorem 7.45 in the text.

