Mathematics 3790H - Analysis I: Introduction to analysis
 Trent University, Fall 2010
 Assignment \#2
 Due on Thursday, 7 October, 2010.

Cesàro Salad?

Ernesto Cesàro (1859-1906) was an Italian mathematician who worked in the field of differential geometry. Along the way he came up with some interesting ideas about the convergence of sequences and series.

1. A sequence $\left\{t_{n}\right\}$ is said to be Cesàro-summable if $\lim _{n \rightarrow \infty} \frac{t_{1}+t_{2}+t_{3}+\cdots+t_{n}}{n}$ exists. Show that any convergent sequence is Cesàro-summable. [4]
Bonus: Is a Cesàro-summable sequence necessarily convergent? Prove it is or give a counterexample. [1]

For questions $\mathbf{2}$ and 3, you may assume that the following result is true:
Stolz-Cesàro Theorem. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences of real numbers such that $\left\{b_{n}\right\}$ is increasing, $b_{n}>0$ for all $n, \lim _{n \rightarrow \infty} b_{n}=\infty$, and $\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ exists or is equal to $\pm \infty$. Then $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$.

This theorem is in some measure a generalization both of the notion of Cesàro summation (see $\mathbf{2}$ below) and of l'Hôpital's Rule.
2. Let $p \in \mathbb{R}, p \neq-1$. Using the Stolz-Cesàro Theorem, compute the limit

$$
\lim _{n \rightarrow \infty} \frac{1^{p}+2^{p}+\ldots+n^{p}}{n^{p+1}}
$$

Bonus: Use 2 to compute $\lim _{n \rightarrow \infty} \sqrt[n]{n!}$. [1]
3. Let $\left\{c_{n}\right\}$ be a sequence of positive real numbers. Use the Stolz-Cesàro Theorem to show that if $\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$ exists or is $\pm \infty$, then $\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}}=\lim _{n \rightarrow \infty} \frac{c_{n+1}}{c_{n}}$. [4]
Note: Compare $\mathbf{3}$ to the hypotheses of the Ratio and Root Tests for convergence of series.

