# Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis 

Trent University, Fall 2009

## Solutions to Assignment \#6

Suppose $\alpha, \beta$, and $\gamma$ are any real numbers not in $\mathbb{Z} \leq 0=\{0,-1,-2, \ldots\}$, and consider the following power series:

$$
\begin{aligned}
& 1+\frac{\alpha \cdot \beta}{1 \cdot \gamma} x+\frac{\alpha(\alpha+1) \cdot \beta(\beta+1)}{1 \cdot 2 \cdot \gamma(\gamma+1)} x^{2}+\frac{\alpha(\alpha+1)(\alpha+2) \cdot \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} x^{3}+\cdots \\
= & 1+\sum_{n=1}^{\infty} \frac{\alpha(\alpha+1) \ldots(\alpha+n-1) \cdot \beta(\beta+1) \ldots(\beta+n-1)}{n!\cdot \gamma(\gamma+1) \ldots(\gamma+n-1)} x^{n}
\end{aligned}
$$

This is what used to be called a hypergeometric series before the more general definition used in our textbook came along.

1. Why are the constants $\alpha, \beta$, and $\gamma$ not allowed to be 0 or any negative integer in the definition above? [1]

Solution. If $\gamma$ were allowed to be 0 or a negative integer, then one would eventually be dividing by 0 in the expression $\frac{\alpha(\alpha+1) \ldots(\alpha+n-1) \cdot \beta(\beta+1) \ldots(\beta+n-1)}{n!\cdot \gamma(\gamma+1) \ldots(\gamma+n-1)}$ for the coefficient of $x^{n}$. On the other hand, if $\alpha$ or $\beta$ were allowed to be 0 or a negative integer, then the coefficient of $x^{n}$ would eventually always be 0 , making the series a polynomial. This is, presumably, a little less interesting.
2. Show that Newton's binomial series is a series of this type. [1]

Solution. Newton's binomial series is

$$
1+a x+\frac{a(a-1)}{2!} x^{2}+\frac{a(a-1)(a-2)}{3!} x^{n}+\cdots=1+\sum_{n=1}^{\infty} \frac{a(a-1) \cdots(a-n+1)}{n!} x^{n},
$$

which converges absolutely to $(1+x)^{a}$ for $|x|<1$ and diverges when $|x|>1$. This is just a hypergeometric series with $\alpha=a$, and where $\beta=\gamma$ can be any number you like except a non-negative integer, so that $\frac{\beta(\beta+1) \ldots(\beta+n-1)}{\gamma(\gamma+1) \ldots(\gamma+n-1)}=1$ for all $n \geq 1$.
3. Determine for which values of $x$ this series respectively converges absolutely, converges conditionally, and diverges. [9]

Solution. We will use the Ratio Test to find the radius of convergence, $R$, of the series, and then, if $R<\infty$, examine the endpoints, $-R$ and $R$, of the interval of convergence to
see what the series does there.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|= & \lim _{n \rightarrow \infty}\left|\frac{\frac{\alpha(\alpha+1) \ldots(\alpha+n) \cdot \beta(\beta+1) \ldots(\beta+n)}{(n+1)!\cdot \gamma(\gamma+1) \ldots(\gamma+n)} x^{n+1}}{\frac{\alpha(\alpha+1) \ldots(\alpha+n-1) \cdot \beta(\beta+1) \ldots(\beta+n-1)}{n!\cdot \gamma(\gamma+1) \ldots(\gamma+n-1)} x^{n}}\right| \\
= & \lim _{n \rightarrow \infty}\left|\frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)} x\right|=\lim _{n \rightarrow \infty} \frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)}|x| \\
& \left(\text { Since } \frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)}>0 \text { once } n\right. \text { is large enough.) } \\
= & \lim _{n \rightarrow \infty} \frac{\alpha \beta+(\alpha+\beta) n+n^{2}}{\gamma+(\gamma+1) n+n^{2}}|x|=|x| \lim _{n \rightarrow \infty} \frac{\frac{\alpha \beta}{n^{2}}+\frac{\alpha+\beta}{n}+1}{\frac{\gamma}{n^{2}}+\frac{\gamma+1}{n}+1} \\
= & |x| \frac{0+0+1}{0+0+1}=|x|
\end{aligned}
$$

It follows by the Ratio Test that the series converges absolutely when $|x|<1$ and diverges when $|x|>1$, so the radius of convergence of this series is $R=1$.

It remains to determine whether, and how, the series converges at the endpoints of the interval of convergence, $x=-1$ and $x=1$. Note that because $\frac{(\alpha+n)(\beta+n)}{(n+1)(\gamma+n)}>0$ once $n$ is large enough, the series eventually alternates when $x=-1$, but is eventually always positive when $x=1$. We will use Gauss' Test to see what happens at these points, since we know from the work above that when $|x|=1$,

$$
\frac{a_{n+1}}{a_{n}}=\frac{\alpha \beta+(\alpha+\beta) n+n^{2}}{\gamma+(\gamma+1) n+n^{2}}
$$

which is a ratio of monic polynomials of the same degree. The key is to compare the coefficients of the next-to-lowest powers of $n$ in the numerator, $\alpha+\beta$, and the denominator, $\gamma+1$.

By parts 1 and 2 of Gauss' Test, the series diverges for $x= \pm 1$ when $\alpha+\beta \geq \gamma+1$; by parts 3 and 4 , it converges (conditionally) at $x=-1$ but diverges at $x=1$ when $\gamma=(\gamma+1)-1 \leq \alpha+\beta<\gamma+1$; and by part 5 , it converges absolutely for $x= \pm 1$ when $\alpha+\beta<(\gamma+1)-1=\gamma$. Whew!

