Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009

Solutions to Assignment \#4

A function from heck.

We first need a bit of notation. If x is a real number, let:

$$
\begin{aligned}
\{x\} & =\text { the distance from } x \text { to the nearest integer } \\
& =\min \{x-\lfloor x\rfloor,\lceil x\rceil-x\}
\end{aligned}
$$

Note that for any real number $x, 0 \leq\{x\} \leq \frac{1}{2}$. It will be handy later to have a couple of properties of $\{x\}$ in hand.

1. For all $x \in \mathbb{R},\left\{x \pm \frac{1}{2}\right\}=\frac{1}{2}-\{x\}$. [1]

Solution. Note that $\{x\}=\frac{1}{2}$ exactly when x is an integer plus (or minus) one half. We break the problem down into cases:
i. If x is an integer, $\{x\}=0$ and $\left\{x \pm \frac{1}{2}\right\}=\frac{1}{2}=\frac{1}{2}-\{x\}$.
ii. If x is an integer plus (or minus) one half, then $\{x\}=\frac{1}{2}$ and $\left\{x \pm \frac{1}{2}\right\}=0=\frac{1}{2}-\{x\}$.
iii. If $n<x<n+\frac{1}{2}$ for some integer n, then $\{x\}=x-n$, while $n+\frac{1}{2}<x+\frac{1}{2}<n+1$ and $n-\frac{1}{2}=(n-1)+\frac{1}{2}<x-\frac{1}{2}<n$. Then $\left\{x+\frac{1}{2}\right\}=n+1-\left(x+\frac{1}{2}\right)=\frac{1}{2}+n-x=\frac{1}{2}-(x-$ $n)=\frac{1}{2}-\{x\}$. Similarly, $\left\{x-\frac{1}{2}\right\}=n-\left(x-\frac{1}{2}\right)=n-x+\frac{1}{2}=\frac{1}{2}-(x-n)=\frac{1}{2}-\{x\}$. iv. If $n+\frac{1}{2}<x<n+1$ for some integer n, then $\{x\}=(n+1)-x$, while $n+1<$ $x+\frac{1}{2}<(n+1)+\frac{1}{2}$ and $n<x-\frac{1}{2}<n+\frac{1}{2}$. Then $\left\{x+\frac{1}{2}\right\}=\left(x+\frac{1}{2}\right)-(n+1)=$ $\frac{1}{2}+x-(n+1)=\frac{1}{2}-(x-(n+1))=\frac{1}{2}-\{x\}$. Similarly, $\left\{x-\frac{1}{2}\right\}=\left(x-\frac{1}{2}\right)-n=$ $\frac{1}{2}+x-1-n=\frac{1}{2}-((n+1)-x)=\frac{1}{2}-\{x\}$.
2. For all $x, y \in \mathbb{R},\{x+y\} \leq\{x\}+\{y\}$ and $\{x\}-\{y\} \leq\{x-y\}$. [1]

Solution. We tackle $\{x+y\} \leq\{x\}+\{y\}$ first. Note that $x=n+a$ and $y=m+b$ for some integers n and m and real numbers a and b with $|a|=\{x\}$ and $|b|=\{y\}$. Then

$$
\begin{aligned}
\{x+y\}=\{a+b\} & =\text { distance } a+b \text { is to the nearest integer } \\
& \leq \text { distance } a+b \text { is from } 0 \\
& \leq|a|+|b|=\{x\}+\{y\}
\end{aligned}
$$

The second inequality follows from the first, using the fact that $x=(x-y)+y$:

$$
\begin{aligned}
\{x\}-\{y\} \leq\{x-y\} & \Longleftrightarrow\{x\} \leq\{x-y\}+\{y\} \\
& \Longleftrightarrow\{x\}=\{(x-y)+y\} \leq\{x-y\}+\{y\}
\end{aligned}
$$

We will now define the function we're really interested in. For any real number x, let

$$
g(x)=\sum_{n=0}^{\infty} \frac{\{n!x\}}{n!} .
$$

One needs to check that this definition really makes sense:
3. Use the Comparison Test (see Chapter 4 in the text) to verify that the series defining $g(x)$ converges no matter what x we pick. [2]

Solution. Observe that it follows from 1 that for each $n \geq 0$ and every $x \in \mathbb{R}$,

$$
0 \leq \frac{\{n!x\}}{n!} \leq \frac{1 / 2}{n!}=\frac{1}{2} \cdot \frac{1}{n!}
$$

It follows by the Comparison Test that $g(x)=\sum_{n=0}^{\infty} \frac{\{n!x\}}{n!}$ converges for any $x \in \mathbb{R}$ by comparison with $\sum_{n=0}^{\infty} \frac{1}{2} \cdot \frac{1}{n!}=\frac{1}{2} \sum_{n=0}^{\infty} \frac{n^{n}}{n!}=\frac{1}{2} e^{1}=\frac{e}{2}$.

Note. One free consequence of this is that $g(x)$ is bounded above by $\frac{e}{2}$.
Note that $g(x) \geq 0$ for all $x \in \mathbb{R}$. [Because $g(x)=\sum_{n=0}^{\infty} \frac{\{n!x\}}{n!}$ is a series of non-negative terms no matter what x is \ldots] It turns out that $g(x)$ is continuous but not differentiable at every point:
4. Show that $g(x)$ is continuous at $x=a$ for all $a \in \mathbb{R}$. [4]

Hint: Given an $\varepsilon>0$, first choose an N such that $\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!}<\frac{\varepsilon}{4}$. (Note that this can be done independently of the value of $x \ldots$) Then go to work on $\sum_{n=0}^{N} \frac{\{n!x\}}{n!}-\sum_{n=0}^{N} \frac{\{n!a\}}{n!}$.

Solution. Suppose $a \in \mathbb{R}$ and $\varepsilon>0$ is given. We need to show that there is a $\delta>0$ such that if $|x-a|<\delta$, then $|g(x)-g(a)|<\varepsilon$.

Following the hint, choose an N such that $\left|\left(\frac{1}{2} \sum_{n=0}^{N} \frac{1}{n!}\right)-\frac{e}{2}\right|<\frac{\varepsilon}{4}$; such an N exists because $\sum_{n=0}^{\infty} \frac{1}{n!}$ converges to e. Since $\sum_{n=0}^{\infty} \frac{1}{n!}$ is a sequence of positive terms, it follows that $\frac{1}{2} \sum_{n=N+1}^{\infty} \frac{1}{n!}<\frac{\varepsilon}{4}$, and hence, since $\{n!x\} \leq \frac{1}{2}$ for all $x \in \mathbb{R}$, that

$$
\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!} \leq \sum_{n=N+1}^{\infty} \frac{1}{2} \cdot \frac{1}{n!}=\frac{1}{2} \sum_{n=N+1}^{\infty} \frac{1}{n!}<\frac{\varepsilon}{4}
$$

It follows from this that:

$$
\begin{aligned}
|g(x)-g(a)| & =\left|\left(\sum_{n=0}^{\infty} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=0}^{\infty} \frac{\{n!a\}}{n!}\right)\right| \\
& =\left|\left(\sum_{n=0}^{N} \frac{\{n!x\}}{n!}+\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=0}^{N} \frac{\{n!a\}}{n!}+\sum_{n=N+1}^{\infty} \frac{\{n!a\}}{n!}\right)\right| \\
& =\left|\left(\sum_{n=0}^{N} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=0}^{N} \frac{\{n!a\}}{n!}\right)+\left(\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=N+1}^{\infty} \frac{\{n!a\}}{n!}\right)\right| \\
& \leq\left|\left(\sum_{n=0}^{N} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=0}^{N} \frac{\{n!a\}}{n!}\right)\right|+\left|\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!}\right|+\left|\sum_{n=N+1}^{\infty} \frac{\{n!a\}}{n!}\right| \\
& <\left|\left(\sum_{n=0}^{N} \frac{\{n!x\}}{n!}\right)-\left(\sum_{n=0}^{N} \frac{\{n!a\}}{n!}\right)\right|+\frac{\varepsilon}{4}+\frac{\varepsilon}{4} \\
& =\left|\sum_{n=0}^{N} \frac{\{n!x\}-\{n!a\}}{n!}\right|+\frac{\varepsilon}{2} \leq\left(\sum_{n=0}^{N} \frac{|\{n!x\}-\{n!a\}|}{n!}\right)+\frac{\varepsilon}{2}
\end{aligned}
$$

Obviously, we now need to work on bounding $\sum_{n=0}^{N} \frac{|\{n!x\}-\{n!a\}|}{n!}$. The key to this is the fact that $\{x\}$ is continuous, the proof of which we leave the proof to the reader. (Intuitively, just look at the graph of $\{x\}$.)

Since $\{x\}$ is continuous we can find, for each $n=0,1, \ldots, N$, a $\delta_{n}>0$ such that if $|x-a|<\delta_{n}$, then $\frac{|\{n!x\}-\{n!a\}|}{n!}<\frac{\varepsilon}{2(N+1)}$. Let $\delta=\min \left\{\delta_{0}, \delta_{1}, \ldots, \delta_{N}\right\}$. Then $\delta>0$ and if $|x-a|<\delta \leq \delta_{n}($ for each $n=0,1, \ldots, N)$, then

$$
|g(x)-g(a)|<\left(\sum_{n=0}^{N} \frac{|\{n!x\}-\{n!a\}|}{n!}\right)+\frac{\varepsilon}{2}<\left(\sum_{n=0}^{N} \frac{\varepsilon}{2(N+1)}\right)+\frac{\varepsilon}{2}=\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
$$

Hence $g(x)$ is continuous at a for any $a \in \mathbb{R}$.
5. Show that $g(x)$ is not differentiable at $x=0$. [2]

Hint: The idea is to construct a sequence $a_{n} \rightarrow 0$ such that $\left|\frac{g\left(a_{n}\right)-g(0)}{a_{n}-0}\right| \geq 1$ for all n.
Solution. Since nobody completed this one, I'm adding it to the list of bonus assignment problems that came with Assignment \#4.

