
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2009

Solutions to Assignment #4
A function from heck.

We first need a bit of notation. If x is a real number, let:

{x} = the distance from x to the nearest integer

= min {x− bxc , dxe − x}

Note that for any real number x, 0 ≤ {x} ≤ 1
2 . It will be handy later to have a couple of

properties of {x} in hand.

1. For all x ∈ R,
{
x± 1

2

}
= 1

2 − {x}. [1]

Solution. Note that {x} = 1
2 exactly when x is an integer plus (or minus) one half. We

break the problem down into cases:
i. If x is an integer, {x} = 0 and

{
x± 1

2

}
= 1

2 = 1
2 − {x}.

ii. If x is an integer plus (or minus) one half, then {x} = 1
2 and

{
x± 1

2

}
= 0 = 1

2 − {x}.
iii. If n < x < n+ 1

2 for some integer n, then {x} = x−n, while n+ 1
2 < x+ 1

2 < n+1 and
n− 1

2 = (n−1)+ 1
2 < x− 1

2 < n. Then
{
x+ 1

2

}
= n+1−

(
x+ 1

2

)
= 1

2 +n−x = 1
2−(x−

n) = 1
2 −{x}. Similarly,

{
x− 1

2

}
= n−

(
x− 1

2

)
= n−x+ 1

2 = 1
2 − (x−n) = 1

2 −{x}.
iv. If n + 1

2 < x < n + 1 for some integer n, then {x} = (n + 1) − x, while n + 1 <
x + 1

2 < (n + 1) + 1
2 and n < x − 1

2 < n + 1
2 . Then

{
x+ 1

2

}
=
(
x+ 1

2

)
− (n + 1) =

1
2 + x − (n + 1) = 1

2 − (x− (n+ 1)) = 1
2 − {x}. Similarly,

{
x− 1

2

}
=
(
x− 1

2

)
− n =

1
2 + x− 1− n = 1

2 − ((n+ 1)− x) = 1
2 − {x}. �

2. For all x, y ∈ R, {x+ y} ≤ {x}+ {y} and {x} − {y} ≤ {x− y}. [1]

Solution. We tackle {x + y} ≤ {x}+ {y} first. Note that x = n + a and y = m + b for
some integers n and m and real numbers a and b with |a| = {x} and |b| = {y}. Then

{x+ y} = {a+ b} = distance a+ b is to the nearest integer

≤ distance a+ b is from 0

≤ |a|+ |b| = {x}+ {y} .

The second inequality follows from the first, using the fact that x = (x− y) + y:

{x} − {y} ≤ {x− y} ⇐⇒ {x} ≤ {x− y}+ {y}
⇐⇒ {x} = {(x− y) + y} ≤ {x− y}+ {y} �

We will now define the function we’re really interested in. For any real number x, let

g(x) =
∞∑

n=0

{n!x}
n!

.
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One needs to check that this definition really makes sense:

3. Use the Comparison Test (see Chapter 4 in the text) to verify that the series defining
g(x) converges no matter what x we pick. [2]

Solution. Observe that it follows from 1 that for each n ≥ 0 and every x ∈ R,

0 ≤ {n!x}
n!

≤ 1/2

n!
=

1

2
· 1

n!
.

It follows by the Comparison Test that g(x) =
∞∑

n=0

{n!x}
n! converges for any x ∈ R by

comparison with
∞∑

n=0

1
2 ·

1
n! = 1

2

∞∑
n=0

1n

n! = 1
2e

1 = e
2 . �

Note. One free consequence of this is that g(x) is bounded above by e
2 .

Note that g(x) ≥ 0 for all x ∈ R. [Because g(x) =
∞∑

n=0

{n!x}
n! is a series of non-negative

terms no matter what x is . . . ] It turns out that g(x) is continuous but not differentiable
at every point:

4. Show that g(x) is continuous at x = a for all a ∈ R. [4]

Hint: Given an ε > 0, first choose an N such that
∞∑

n=N+1

{n!x}
n! < ε

4 . (Note that this can

be done independently of the value of x . . . ) Then go to work on
N∑

n=0

{n!x}
n! −

N∑
n=0

{n!a}
n! .

Solution. Suppose a ∈ R and ε > 0 is given. We need to show that there is a δ > 0 such
that if |x− a| < δ, then |g(x)− g(a)| < ε.

Following the hint, choose an N such that

∣∣∣∣( 1
2

N∑
n=0

1
n!

)
− e

2

∣∣∣∣ < ε
4 ; such an N exists

because
∞∑

n=0

1
n! converges to e. Since

∞∑
n=0

1
n! is a sequence of positive terms, it follows that

1
2

∞∑
n=N+1

1
n! <

ε
4 , and hence, since {n!x} ≤ 1

2 for all x ∈ R, that

∞∑
n=N+1

{n!x}
n!

≤
∞∑

n=N+1

1

2
· 1

n!
=

1

2

∞∑
n=N+1

1

n!
<
ε

4
.
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It follows from this that:

|g(x)− g(a)| =

∣∣∣∣∣
( ∞∑

n=0

{n!x}
n!

)
−

( ∞∑
n=0

{n!a}
n!

)∣∣∣∣∣
=

∣∣∣∣∣
(

N∑
n=0

{n!x}
n!

+
∞∑

n=N+1

{n!x}
n!

)
−

(
N∑

n=0

{n!a}
n!

+
∞∑

n=N+1

{n!a}
n!

)∣∣∣∣∣
=

∣∣∣∣∣
(

N∑
n=0

{n!x}
n!

)
−

(
N∑

n=0

{n!a}
n!

)
+

( ∞∑
n=N+1

{n!x}
n!

)
−

( ∞∑
n=N+1

{n!a}
n!

)∣∣∣∣∣
≤

∣∣∣∣∣
(

N∑
n=0

{n!x}
n!

)
−

(
N∑

n=0

{n!a}
n!

)∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=N+1

{n!x}
n!

∣∣∣∣∣+

∣∣∣∣∣
∞∑

n=N+1

{n!a}
n!

∣∣∣∣∣
<

∣∣∣∣∣
(

N∑
n=0

{n!x}
n!

)
−

(
N∑

n=0

{n!a}
n!

)∣∣∣∣∣+
ε

4
+
ε

4

=

∣∣∣∣∣
N∑

n=0

{n!x} − {n!a}
n!

∣∣∣∣∣+
ε

2
≤

(
N∑

n=0

|{n!x} − {n!a}|
n!

)
+
ε

2

Obviously, we now need to work on bounding
N∑

n=0

|{n!x}−{n!a}|
n! . The key to this is the fact

that {x} is continuous, the proof of which we leave the proof to the reader. (Intuitively,
just look at the graph of {x}.)

Since {x} is continuous we can find, for each n = 0, 1, . . . , N , a δn > 0 such that if

|x− a| < δn, then |{n!x}−{n!a}|n! < ε
2(N+1) . Let δ = min { δ0, δ1, . . . , δN }. Then δ > 0 and

if |x− a| < δ ≤ δn (for each n = 0, 1, . . . , N), then

|g(x)− g(a)| <

(
N∑

n=0

|{n!x} − {n!a}|
n!

)
+
ε

2
<

(
N∑

n=0

ε

2(N + 1)

)
+
ε

2
=
ε

2
+
ε

2
= ε .

Hence g(x) is continuous at a for any a ∈ R. �

5. Show that g(x) is not differentiable at x = 0. [2]

Hint: The idea is to construct a sequence an → 0 such that
∣∣∣ g(an)−g(0)

an−0

∣∣∣ ≥ 1 for all n.

Solution. Since nobody completed this one, I’m adding it to the list of bonus assignment
problems that came with Assignment #4. �
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