
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2008

Assignment #3
The integral form of the remainder of a Taylor series

Suppose that a is a real number and f(x) is a function such that f (n)(x) is defined
and continuous for all n ≥ 0 and all values of x we may encounter. The Taylor polynomial
of degree n of f(x) at a is defined to be

Tn,a(x) =
n∑

k=0

f (k)(a)
k!

(x− a)k

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n ,

and the corresponding remainder term is

f(x) = Tn,a(x) +Rn,a(x) , i.e. Rn,a(x) = f(x)− Tn,a(x) .

1. Use the Fundamental Theorem of Calculus to show that

R0,a(x) =
∫ x

a

f ′(t) dt . [1]

Solution. By definition R0,a(x) = f(x)−T0,a(x) = f(x)−f(a), and by the Fundamental

Theorem of Calculus, f(x)− f(a) =
∫ x

a

f ′(t) dt. Hence R0,a(x) =
∫ x

a

f ′(t) dt, as desired.

�

2. Use induction (and some calculus!) to show that

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x− t)n dt

for n ≥ 0. (This is the integral form of the remainder of a Taylor series.) [5]

Solution. As instructed, we will proceed by induction on n.

Base Step. (n = 0) We need to check that R0,a(x) =
∫ x

a

f (0+1)(t)
0!

(x−t)0 dt =
∫ x

a

f ′(t) dt.

This is just problem 1.

Induction Hypothesis. (n = k) Assume thatRk,a(x) =
∫ x

a

f (k+1)(t)
k!

(x− t)k dt.
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Induction Step. (n = k + 1) By definition and the Induction Hypothesis,

Rk+1,a(x) = f(x)− Tk+1,a(x) = f(x)−
[
Tk,a(x) +

f (k+1)(a)
(k + 1)!

(x− a)k+1

]
= [f(x)− Tk,a(x)]− f (k+1)(a)

(k + 1)!
(x− a)k+1

= Rk,a(x)− f (k+1)(a)
(k + 1)!

(x− a)k+1

=
∫ x

a

f (k+1)(t)
k!

(x− t)k dt− f (k+1)(a)
(k + 1)!

(x− a)k+1

We will now apply integration by parts to the integral
∫ x

a

f (k+2)(t)
(k + 1)!

(x − t)k+1 dt.

Bearing in mind that t is the variable of integration, the parts are:

u = (x− t)k+1 dv = f(k+2)(t)
(k+1)! dt

du = −(k + 1)(x− t)k dt v = f(k+1)(t)
(k+1)!

Here goes! ∫ x

a

f (k+2)(t)
(k + 1)!

(x− t)k+1 dt =
∫ x

a

u dv = uv|xa −
∫ x

a

v du

= (x− t)k+1 · f
(k+1)(t)

(k + 1)!

∣∣∣∣x
a

−
∫ x

a

f (k+1)(t)
(k + 1)!

· (−1)(k + 1)(x− t)k dt

=
[
0− f (k+1)(a)

(k + 1)!
(x− a)k+1

]
− (−1)

∫ x

a

f (k+1)(t)
k!

(x− t)k dt

=
∫ x

a

f (k+1)(t)
k!

(x− t)k dt− f (k+1)(a)
(k + 1)!

(x− a)k+1

Putting the two previous paragraphs together, we get

Rk+1,a(x) =
∫ x

a

f (k+1)(t)
k!

(x− t)k dt− f (k+1)(a)
(k + 1)!

(x− a)k+1

=
∫ x

a

f (k+2)(t)
(k + 1)!

(x− t)k+1 dt ,

as desired.

It follows by induction that Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x− t)n dt for n ≥ 0. �
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3. Deduce the Lagrange Remainder Theorem from 2. [4]

Note: For 3 you may assume the Mean Value Theorem for Integrals:

If f(x) is continuous on [a, b] and g(x) is integrable and non-negative
(or non-positive) on [a, b], then∫ b

a

f(x)g(x) dx = f(ξ)
∫ b

a

g(x) dx

for some ξ ∈ [a, b].

Solution. Applying the Mean Value Theorem for integrals to the integral form of Rn,a(x)
gives us

Rn,a(x) =
∫ x

a

f (n+1)(t)
n!

(x− t)n dt

=
f (n+1)(c)

n!

∫ x

a

(x− t)n dt (for some c ∈ [a, b])

=
f (n+1)(c)

n!
· (−1)

(x− t)n+1

n+ 1

∣∣∣∣x
a

=
f (n+1)(c)

n!
· (−1)

[
0− (x− a)n+1

n+ 1

]
=
f (n+1)(c)

n!
· (x− a)n+1

n+ 1

=
f (n+1)(c)
(n+ 1)!

(x− a)n+1 ,

which is the Lagrange form of the remainder. We leave it to the reader to figure out why
the c ∈ [a, b] has to be strictly between a and b. �
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