Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2008

Assignment #3
The integral form of the remainder of a Taylor series

Suppose that @ is a real number and f(z) is a function such that f(™(z) is defined
and continuous for all n > 0 and all values of x we may encounter. The Taylor polynomial
of degree n of f(x) at a is defined to be
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and the corresponding remainder term is

f(@) = Tha(®) + Rna(z), ice. Rya(r) = f(2) = Thalz).

1. Use the Fundamental Theorem of Calculus to show that

Roa) = [ F@Oar.

SOLUTION. By definition Ry o(z) = f(x) —To,q(x) = f(z) — f(a), and by the Fundamental
Theorem of Calculus, f(z) — f(a) = / f'(t)dt. Hence Ry ,(z) = / f'(t)dt, as desired.
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2. Use induction (and some calculus!) to show that
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for n > 0. (This is the integral form of the remainder of a Taylor series.) [5/

SOLUTION. As instructed, we will proceed by induction on n.
s oD )

Base Step. (n = 0) We need to check that Ry o(z) = / T(m—t)o dt = / f(t) dt.

This is just problem 1.
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Induction Hypothesis. (n = k) Assume thatRy () = / T(aﬁ —t)kat.
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Induction Step. (n = k + 1) By definition and the Induction Hypothesis,

Runae) = £2) ~ T l) = 0) - [Teali) + L0 0 oy
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= Ry.a(z) — %(x—a)“l
= /j w@ —t)Fdt — %(m —a)kt!

T (@) ket
We will now apply integration by parts to the integral / W(;c — )t dt.

Bearing in mind that ¢ is the variable of integration, the parts are:

u=(xr—t)kt! dv = fE’;fl))(,t) dt
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Here goes!
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Putting the two previous paragraphs together, we get
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as desired.
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It follows by induction that R, ,(x) = / o

(x—t)"dt forn>0. &



3. Deduce the Lagrange Remainder Theorem from 2. [4]
Note: For 3 you may assume the Mean Value Theorem for Integrals:

If f(z) is continuous on [a, b] and g(z) is integrable and non-negative
(or non-positive) on [a, b], then

/a  fe)ale) de = £ / (@) da

for some & € [a, b].

SOLUTION. Applying the Mean Value Theorem for integrals to the integral form of R, ,(x)
gives us
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which is the Lagrange form of the remainder. We leave it to the reader to figure out why
the ¢ € [a, b] has to be strictly between a and b. B



