Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2008
 Assignment \#3
 The integral form of the remainder of a Taylor series

Suppose that a is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and all values of x we may encounter. The Taylor polynomial of degree n of $f(x)$ at a is defined to be

$$
\begin{aligned}
T_{n, a}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n},
\end{aligned}
$$

and the corresponding remainder term is

$$
f(x)=T_{n, a}(x)+R_{n, a}(x) \text {, i.e. } R_{n, a}(x)=f(x)-T_{n, a}(x) .
$$

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0, a}(x)=\int_{a}^{x} f^{\prime}(t) d t
$$

Solution. By definition $R_{0, a}(x)=f(x)-T_{0, a}(x)=f(x)-f(a)$, and by the Fundamental Theorem of Calculus, $f(x)-f(a)=\int_{a}^{x} f^{\prime}(t) d t$. Hence $R_{0, a}(x)=\int_{a}^{x} f^{\prime}(t) d t$, as desired.
2. Use induction (and some calculus!) to show that

$$
R_{n, a}(x)=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

for $n \geq 0$. (This is the integral form of the remainder of a Taylor series.) [5]
Solution. As instructed, we will proceed by induction on n.
Base Step. $(n=0)$ We need to check that $R_{0, a}(x)=\int_{a}^{x} \frac{f^{(0+1)}(t)}{0!}(x-t)^{0} d t=\int_{a}^{x} f^{\prime}(t) d t$. This is just problem 1.
Induction Hypothesis. $(n=k)$ Assume that $R_{k, a}(x)=\int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t$.

Induction Step. $(n=k+1)$ By definition and the Induction Hypothesis,

$$
\begin{aligned}
R_{k+1, a}(x)=f(x)-T_{k+1, a}(x) & =f(x)-\left[T_{k, a}(x)+\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}\right] \\
& =\left[f(x)-T_{k, a}(x)\right]-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} \\
& =R_{k, a}(x)-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} \\
& =\int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}
\end{aligned}
$$

We will now apply integration by parts to the integral $\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t$. Bearing in mind that t is the variable of integration, the parts are:

$$
\begin{array}{cc}
u=(x-t)^{k+1} & d v=\frac{f^{(k+2)}(t)}{(k+1)!} d t \\
d u=-(k+1)(x-t)^{k} d t & v=\frac{f^{(k+1)}(t)}{(k+1)!}
\end{array}
$$

Here goes!

$$
\begin{aligned}
& \int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t=\int_{a}^{x} u d v=\left.u v\right|_{a} ^{x}-\int_{a}^{x} v d u \\
= & \left.(x-t)^{k+1} \cdot \frac{f^{(k+1)}(t)}{(k+1)!}\right|_{a} ^{x}-\int_{a}^{x} \frac{f^{(k+1)}(t)}{(k+1)!} \cdot(-1)(k+1)(x-t)^{k} d t \\
= & {\left[0-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}\right]-(-1) \int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t } \\
= & \int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}
\end{aligned}
$$

Putting the two previous paragraphs together, we get

$$
\begin{aligned}
R_{k+1, a}(x) & =\int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} \\
& =\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t
\end{aligned}
$$

as desired.
It follows by induction that $R_{n, a}(x)=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t$ for $n \geq 0$.
3. Deduce the Lagrange Remainder Theorem from 2. [4]

Note: For 3 you may assume the Mean Value Theorem for Integrals:
If $f(x)$ is continuous on $[a, b]$ and $g(x)$ is integrable and non-negative (or non-positive) on $[a, b]$, then

$$
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x
$$

for some $\xi \in[a, b]$.
Solution. Applying the Mean Value Theorem for integrals to the integral form of $R_{n, a}(x)$ gives us

$$
\begin{aligned}
R_{n, a}(x) & =\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t \\
& =\frac{f^{(n+1)}(c)}{n!} \int_{a}^{x}(x-t)^{n} d t \quad(\text { for some } c \in[a, b]) \\
& =\left.\frac{f^{(n+1)}(c)}{n!} \cdot(-1) \frac{(x-t)^{n+1}}{n+1}\right|_{a} ^{x} \\
& =\frac{f^{(n+1)}(c)}{n!} \cdot(-1)\left[0-\frac{(x-a)^{n+1}}{n+1}\right] \\
& =\frac{f^{(n+1)}(c)}{n!} \cdot \frac{(x-a)^{n+1}}{n+1} \\
& =\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1},
\end{aligned}
$$

which is the Lagrange form of the remainder. We leave it to the reader to figure out why the $c \in[a, b]$ has to be strictly between a and b.

