Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009
Solutions to Assignment \#2
For questions $\mathbf{1}$ and $\mathbf{2}$, assume that we know that

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

for all $x \in \mathbb{R}$.

1. Work out the power series for a^{x}, where a is a positive real number. [3]

Solution. Note that if $a>0$, then $a=e^{\ln (a)}$. It follows that

$$
\begin{aligned}
a^{x} & =\left(e^{\ln (a)}\right)^{x}=e^{\ln (a) \cdot x} \\
& =1+\frac{\ln (a) \cdot x}{1!}+\frac{(\ln (a) \cdot x)^{2}}{2!}+\frac{(\ln (a) \cdot x)^{3}}{3!}+\cdots \\
& =1+\frac{\ln (a)}{1!} x+\frac{(\ln (a))^{2}}{2!} x^{2}+\frac{(\ln (a))^{3}}{3!} x^{3}+\cdots \\
& =\sum_{n=0}^{\infty} \frac{(\ln (a))^{n}}{n!} x^{n} .
\end{aligned}
$$

2. Show that $e^{s+t}=e^{s} e^{t}$ by doing algebra with the appropriate power series. [4]

Solution. One key to doing this one efficiently is to use the Binomial Theorem. Recall that if $q \geq 0$, then

$$
(s+t)^{q}=s^{q}+q s^{q-1} t+\frac{q(q-1)}{2} s^{q-2} t^{2}+\cdots+q s t^{q-1}+t^{q}=\sum_{p=0}^{q} \frac{q!}{p!(q-p)!} s^{q-p} t^{p} .
$$

It follows that

$$
\frac{(s+t)^{q}}{q!}=\frac{1}{q!} \sum_{p=0}^{q} \frac{q!}{p!(q-p)!} s^{q-p} t^{p}=\sum_{p=0}^{q} \frac{1}{p!(q-p)!} s^{q-p} t^{p} .
$$

Setting $n=q-p$ and $k=p$ in the last, allows us to rewrite this in the form we are going to need:

$$
\frac{(s+t)^{q}}{q!}=\sum_{\substack{n, k \geq 0 \\ n+k=q}} \frac{s^{n} t^{k}}{n!k!}
$$

So equipped, off we go, using the distributive laws and the formula we derived above:

$$
\begin{aligned}
e^{s} e^{t} & =\left(1+\frac{s}{1!}+\frac{s^{2}}{2!}+\frac{s^{3}}{3!}+\frac{s^{4}}{4!}+\cdots\right)\left(1+\frac{t}{1!}+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!}+\cdots\right) \\
& =\left(\sum_{n=0}^{\infty} \frac{s^{n}}{n!}\right) \cdot\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\right)=\sum_{n=0}^{\infty} \frac{s^{n}}{n!}\left(\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\right)=\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{s^{n}}{n!} \cdot \frac{t^{k}}{k!} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\infty} \frac{s^{n} t^{k}}{n!k!}
\end{aligned}
$$

Note that in this last sum, we are summing $\frac{s^{n} t^{k}}{n!k!}$ over all possible combinations of $n \geq 0$ and $k \geq 0$. We will list all these combinations a little differently by grouping them according to what the sum $n+k$ amounts to:

$$
\begin{aligned}
& =\sum_{q=0}^{\infty}\left(\sum_{\substack{n, k \geq 0 \\
n+k=q}} \frac{s^{n} t^{k}}{n!k!}\right) \\
& =\sum_{q=0}^{\infty} \frac{(s+t)^{q}}{q!} \quad(\text { Using the formula obtained previously.) } \\
& =1+\frac{s+t}{1!}+\frac{(s+t)^{2}}{2!}+\frac{(s+t)^{3}}{3!}+\frac{(s+t)^{4}}{4!}+\frac{(s+t)^{5}}{5!} \cdots \\
& =e^{s+t}
\end{aligned}
$$

Whew!
3. The modern (and Archimedean!) meaning of "the series $\sum_{i=0}^{\infty} a_{i}$ converges to A " is usually captured by a definition like:
(*) $\sum_{i=0}^{\infty} a_{i}$ converges to A if for every $\varepsilon>0$ there is a K such that for all $k \geq K$ we have $\left|\left(\sum_{i=0}^{k} a_{i}\right)-A\right|<\varepsilon$.
Archimedes himself would probably have said something more along the following lines:
(•) $\sum_{i=0}^{\infty} a_{i}$ converges to A if both
(1) for every $L<A$ there is a K such that for all $k \geq K$ we have $L<\left(\sum_{i=0}^{k} a_{i}\right)$, and
(2) for every $U>A$ there is a K^{\prime} such that for all $k \geq K^{\prime}$ we have $\left(\sum_{i=0}^{k} a_{i}\right)<U$. Explain, in detail, why these two definitions are actually equivalent. [3]

Solution. We'll show that each statement implies the other separately. Suppose $\sum_{i=0}^{\infty} a_{i}$ is a series and A is a number.
(\Longrightarrow) Assume $\sum_{i=0}^{\infty} a_{i}$ converges to A in the sense of $(*)$, and suppose $L<A$ and $U>A$ are given. Let $\varepsilon=\min (A-L, U-A)$.

By $(*)$, there is a K such that for all $k \geq K$ we have $\left|\left(\sum_{i=0}^{k} a_{i}\right)-A\right|<\varepsilon$. It follows that for all $k \geq K$ we have $A-\left(\sum_{i=0}^{k} a_{i}\right)<\varepsilon \leq A-L$, so $-\sum_{i=0}^{k} a_{i}<-L$, and hence $L<\sum_{i=0}^{k} a_{i}$.

Similarly, by $(*)$, there is a K such that for all $k \geq K$ we have $\left|\left(\sum_{i=0}^{k} a_{i}\right)-A\right|<\varepsilon$. It follows that for all $k \geq K^{\prime}=K$ we have $\left(\sum_{i=0}^{k} a_{i}\right)-A<\varepsilon \leq U-A$, so $\sum_{i=0}^{k} a_{i}<U$.

Since both parts of (\bullet) are satisfied, $\sum_{i=0}^{\infty} a_{i}$ converges to A in the sense of (\bullet).
(\Longleftarrow) Assume $\sum_{i=0}^{\infty} a_{i}$ converges to A in the sense of (\bullet), and suppose $\varepsilon>0$ is given. Let $L=A-\varepsilon$ and $U=A+\varepsilon$; note that $L<A<U$.

By part (1) of (\bullet), there is a K such that for all $k \geq K$ we have $L<\sum_{i=0}^{k} a_{i}$, and, by part (2), there is a K^{\prime} such that for all $k \geq K^{\prime}$ we have $\sum_{i=0}^{k} a_{i}<U$. Let $N=\max \left(K, K^{\iota}\right)$. Then, for all $k \geq N$, we have

$$
A-\varepsilon=L<\sum_{i=0}^{k} a_{i}<U=A+\varepsilon
$$

which amounts to

$$
\left|\left(\sum_{i=0}^{k} a_{i}\right)-A\right|<\varepsilon
$$

Thus $\sum_{i=0}^{\infty} a_{i}$ converges to A in the sense of (*).
Hence the two definitions are equivalent.

