
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2009

Solutions to Assignment #2

For questions 1 and 2, assume that we know that

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!

for all x ∈ R.

1. Work out the power series for ax, where a is a positive real number. [3]

Solution. Note that if a > 0, then a = eln(a). It follows that

ax =
(
eln(a)

)x

= eln(a)·x

= 1 +
ln(a) · x

1!
+

(ln(a) · x)2

2!
+

(ln(a) · x)3

3!
+ · · ·

= 1 +
ln(a)

1!
x +

(ln(a))2

2!
x2 +

(ln(a))3

3!
x3 + · · ·

=
∞∑

n=0

(ln(a))n

n!
xn . �

2. Show that es+t = eset by doing algebra with the appropriate power series. [4]

Solution. One key to doing this one efficiently is to use the Binomial Theorem. Recall
that if q ≥ 0, then

(s + t)q = sq + qsq−1t +
q(q − 1)

2
sq−2t2 + · · ·+ qstq−1 + tq =

q∑
p=0

q!
p!(q − p)!

sq−ptp .

It follows that

(s + t)q

q!
=

1
q!

q∑
p=0

q!
p!(q − p)!

sq−ptp =
q∑

p=0

1
p!(q − p)!

sq−ptp .

Setting n = q − p and k = p in the last, allows us to rewrite this in the form we are going
to need:

(s + t)q

q!
=

∑
n, k≥0

n+k=q

sntk

n!k!
.
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So equipped, off we go, using the distributive laws and the formula we derived above:

eset =
(

1 +
s

1!
+

s2

2!
+

s3

3!
+

s4

4!
+ · · ·

)(
1 +

t

1!
+

t2

2!
+

t3

3!
+

t4

4!
+ · · ·

)
=

( ∞∑
n=0

sn

n!

)
·

( ∞∑
k=0

tk

k!

)
=
∞∑

n=0

sn

n!

( ∞∑
k=0

tk

k!

)
=
∞∑

n=0

∞∑
k=0

sn

n!
· t

k

k!

=
∞∑

n=0

∞∑
k=0

sntk

n!k!

Note that in this last sum, we are summing sntk

n!k! over all possible combinations of n ≥ 0 and
k ≥ 0. We will list all these combinations a little differently by grouping them according
to what the sum n + k amounts to:

=
∞∑

q=0

 ∑
n, k≥0
n+k=q

sntk

n!k!


=
∞∑

q=0

(s + t)q

q!
(Using the formula obtained previously.)

= 1 +
s + t

1!
+

(s + t)2

2!
+

(s + t)3

3!
+

(s + t)4

4!
+

(s + t)5

5!
· · ·

= es+t

Whew! �

3. The modern (and Archimedean!) meaning of “the series
∞∑

i=0

ai converges to A” is

usually captured by a definition like:

(∗)
∞∑

i=0

ai converges to A if for every ε > 0 there is a K such that for all k ≥ K we

have
∣∣∣∣( k∑

i=0

ai

)
−A

∣∣∣∣ < ε.

Archimedes himself would probably have said something more along the following
lines:

(•)
∞∑

i=0

ai converges to A if both

(1) for every L < A there is a K such that for all k ≥ K we have L <

(
k∑

i=0

ai

)
,

and

(2) for every U > A there is a K ′ such that for all k ≥ K ′ we have
(

k∑
i=0

ai

)
< U .

Explain, in detail, why these two definitions are actually equivalent. [3]
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Solution. We’ll show that each statement implies the other separately. Suppose
∞∑

i=0

ai is

a series and A is a number.

(=⇒) Assume
∞∑

i=0

ai converges to A in the sense of (∗), and suppose L < A and U > A are

given. Let ε = min(A− L, U −A).

By (∗), there is a K such that for all k ≥ K we have
∣∣∣∣( k∑

i=0

ai

)
−A

∣∣∣∣ < ε. It follows

that for all k ≥ K we have A −
(

k∑
i=0

ai

)
< ε ≤ A − L, so −

k∑
i=0

ai < −L, and hence

L <
k∑

i=0

ai.

Similarly, by (∗), there is a K such that for all k ≥ K we have
∣∣∣∣( k∑

i=0

ai

)
−A

∣∣∣∣ < ε. It

follows that for all k ≥ K ′ = K we have
(

k∑
i=0

ai

)
−A < ε ≤ U −A, so

k∑
i=0

ai < U .

Since both parts of (•) are satisfied,
∞∑

i=0

ai converges to A in the sense of (•).

(⇐=) Assume
∞∑

i=0

ai converges to A in the sense of (•), and suppose ε > 0 is given. Let

L = A− ε and U = A + ε; note that L < A < U .

By part (1) of (•), there is a K such that for all k ≥ K we have L <
k∑

i=0

ai, and, by

part (2), there is a K ′ such that for all k ≥ K ′ we have
k∑

i=0

ai < U . Let N = max(K, K‘).

Then, for all k ≥ N , we have

A− ε = L <
k∑

i=0

ai < U = A + ε ,

which amounts to ∣∣∣∣∣
(

k∑
i=0

ai

)
−A

∣∣∣∣∣ < ε .

Thus
∞∑

i=0

ai converges to A in the sense of (∗).

Hence the two definitions are equivalent. �
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