Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2009

Solution to Assignment #1

In solving the following problem, you may assume without further ado that for any
x> 0and n >0,
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(Not to worry, we’ll show this is true later in the course.)

1. Show that e is irrational. [10]

0< Ry(z) <

Hint: Suppose e were rational. Try to derive a contradiction from this assumption by
rewriting e using the expression above and then playing with it ...

SOLUTION. Suppose, by way of contradiction, that e were rational, i.e. e = ¢ for some
positive integers a and b. Note that b > 1 and pick an n such that n > 3b.
Using the given equation,
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Multiplying through by n! gives us the following equation:
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Note that since n > 3b > b, b is a factor of n! =1-2-3-...-n, and so ”T!“ must be an
integer. It is easy to see that n!, ’f—;, g—;, ce Z—: must all be integers too. It follows that

n!R, (1) must also be an integer.
On the other hand, we have that
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Since n >3b >3, n+1>4, and so
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which means n!R,,(1) cannot be an integer, contradicting the conclusion reached earlier.
Since assuming otherwise leads to a contradiction, e cannot be rational, i.e. it is
irrational. W



