Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009

Solution to Assignment \#1

In solving the following problem, you may assume without further ado that for any $x>0$ and $n \geq 0$,

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!}+R_{n}(x),
$$

where

$$
0<R_{n}(x)<\frac{3^{x} x^{n+1}}{(n+1)!}
$$

(Not to worry, we'll show this is true later in the course.)

1. Show that e is irrational. [10]

Hint: Suppose e were rational. Try to derive a contradiction from this assumption by rewriting e using the expression above and then playing with it ...

Solution. Suppose, by way of contradiction, that e were rational, i.e. $e=\frac{a}{b}$ for some positive integers a and b. Note that $b \geq 1$ and pick an n such that $n>3 b$.

Using the given equation,

$$
\begin{aligned}
\frac{a}{b}=e=e^{1} & =1+\frac{1}{1!}+\frac{1^{2}}{2!}+\frac{1^{3}}{3!}+\cdots+\frac{1^{n}}{n!}+R_{n}(1) \\
& =1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+R_{n}(1) .
\end{aligned}
$$

Multiplying through by n ! gives us the following equation:

$$
\frac{n!a}{b}=n!+\frac{n!}{1!}+\frac{n!}{2!}+\frac{n!}{3!}+\cdots+\frac{n!}{n!}+n!R_{n}(1)
$$

Note that since $n>3 b>b, b$ is a factor of $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$, and so $\frac{n!a}{b}$ must be an integer. It is easy to see that $n!, \frac{n!}{1!}, \frac{n!}{2!}, \ldots, \frac{n!}{n!}$ must all be integers too. It follows that $n!R_{n}(1)$ must also be an integer.

On the other hand, we have that

$$
0<R_{n}(1)<\frac{3^{1} 1^{n+1}}{(n+1)!}=\frac{3}{(n+1)!}
$$

so

$$
0=n!0<n!R_{n}(1)<\frac{n!3}{(n+1)!}=\frac{3}{n+1} .
$$

Since $n>3 b \geq 3, n+1>4$, and so

$$
0=n!0<n!R_{n}(1)<\frac{3}{n+1}<\frac{3}{4}<1
$$

which means $n!R_{n}(1)$ cannot be an integer, contradicting the conclusion reached earlier.
Since assuming otherwise leads to a contradiction, e cannot be rational, i.e. it is irrational.

