Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009

Solutions to the quizzes

Quiz \#1. Thursday, 24 September, 2009 (10 minutes)
The series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ sums to 2 . Denote the k th partial sum of this series by $S_{k}=\sum_{n=0}^{k} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}$.

1. Show that $S_{k}<2$ for every $k \geq 0$. [2]

2, How large does k need to be to ensure that the partial sum $S_{k}=\sum_{n=0}^{k} \frac{1}{2^{n}}$ of this series is within 0.001 of 2? [3]
Hints: First, what, exactly, is $2-S_{k}$? Second, note that $2^{10}=1024$.
Solutions. The first question is over with very quickly if you remember the formula for the sum of a finite geometric series. The solution below does it in a brutally simple-minded way instead.

1. Consider the first few values of $2-S_{k}=2-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}\right)$,

$$
\begin{aligned}
& 2-S_{0}=2-1=0 \\
& 2-S_{1}=2-\left(1+\frac{1}{2}\right)=\frac{1}{2} \\
& 2-S_{2}=2-\left(1+\frac{1}{2}+\frac{1}{4}\right)=\frac{1}{4} \\
& 2-S_{3}=2-\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{1}{8}
\end{aligned}
$$

and observe that in each case $2-S_{k}=\frac{1}{2^{k}}$, which is the last term in S_{k}. It isn't too hard to check that this is true in general. For example,

$$
\begin{aligned}
S_{k}+\frac{1}{2^{k}}= & \left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}\right)+\frac{1}{2^{k}} \\
= & \left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k-1}}\right)+\left(\frac{1}{2^{k}}+\frac{1}{2^{k}}\right) \\
= & \left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k-1}}\right)+\frac{1}{2^{k-1}} \\
= & \left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k-2}}\right)+\left(\frac{1}{2^{k-1}}+\frac{1}{2^{k-1}}\right) \\
= & \left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k-2}}\right)+\frac{1}{2^{k-2}} \\
& \vdots \\
= & \left(1+\frac{1}{2}+\frac{1}{4}\right)+\frac{1}{4}=\left(1+\frac{1}{2}\right)+\frac{1}{2}=1+1=2
\end{aligned}
$$

Since $2-S_{k}=\frac{1}{2^{k}}>0$ for every $k \geq 0$, we must have $S_{k}<2$ for every $k \geq 0$.
2. We need to find out for which values of k we have $2-S_{k}<0.001=\frac{1}{1000}$. From our work in question 1 , we know that $2-S_{k}=\frac{1}{2^{k}}$, so we are looking for the $k \mathrm{~s}$ such that $\frac{1}{2^{k}}<\frac{1}{1000}$, i.e. such that $2^{k}>1000$. Since 2^{k} is an increasing function of k, $2^{9}=512<1000$, and $2^{10}=1024>1000$, it follows that $2-S_{k}<0.001$ for all $k \geq 10$, but not for $0 \leq k \leq 9$.

Thus k needs to be at least 10 to ensure that $2-S_{k}<0.001$.

Quiz \#2. Thursday, 1 October, 2009 (10 minutes)
You may assume that $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$ converges to $\frac{1}{1-x}$ for $|x|<1$. Find the sum of each of the following series for $|x|<1$:

1. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$ [2]
2. $\sum_{n=0}^{\infty}(n+1) x^{n}=1+2 x+3 x^{2}+4 x^{3}+\cdots$ [3]

Hints: Substitution. Calculus.
Solutions. We will obtain both sums by modifying the given geometric series using substitution and/or calculus, after a little bit of reverse-engineering on the series in questions 1 and 2 .

1. Note that

$$
\begin{aligned}
\frac{d}{d x} \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1} & =\frac{d}{d x}\left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots\right) \\
& =\frac{d}{d x} x-\frac{d}{d x} \frac{x^{3}}{3}+\frac{d}{d x} \frac{x^{5}}{5}-\frac{d}{d x} \frac{x^{7}}{7}+\cdots \\
& =1-x^{2}+x^{4}-x^{6}+\cdots
\end{aligned}
$$

This is a geometric series with initial term 1 and common ratio $-x^{2}$, which therefore sums to $\frac{1}{1-\left(-x^{2}\right)}=\frac{1}{1+x^{2}}$. It follows that, up to a constant C,

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=\int\left(1-x^{2}+x^{4}-x^{6}+\cdots\right) d x=\int \frac{1}{1+x^{2}} d x=C+\arctan (x)
$$

Since $\arctan (0)=0=\sum_{n=0}^{\infty} \frac{(-1)^{n} 0^{2 n+1}}{2 n+1}$, the constant of integration turns out to be 0, and so

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=\arctan (x)
$$

2. Note that, up to a constant C,

$$
\begin{aligned}
\int\left(\sum_{n=0}^{\infty}(n+1) x^{n}\right) d x & =\int\left(1+2 x+3 x^{2}+4 x^{3}+\cdots\right) d x \\
& =\int 1 d x+\int 2 x d x+\int 3 x^{2} d x+\int 4 x^{3} d x+\cdots \\
& =C+x+x^{2}+x^{3}+x^{4}+\cdots
\end{aligned}
$$

We could optimistically assume that $C=1$, making the sum of the last series $\frac{1}{1-x}$, and get away with it because C will disappear in what follows:

$$
\begin{aligned}
\sum_{n=0}^{\infty}(n+1) x^{n} & =\frac{d}{d x}\left(C+x+x^{2}+x^{3}+x^{4}+\cdots\right) \\
& =\frac{d}{d x}\left(1+x+x^{2}+x^{3}+x^{4}+\cdots\right) \quad\left(\text { Since } \frac{d}{d x} C=0=\frac{d}{d x} 1 .\right) \\
& =\frac{d}{d x}\left(\frac{1}{1-x}\right) \\
& =\frac{-1}{(1-x)^{2}} \cdot \frac{d}{d x}(1-x) \\
& =\frac{-1}{(1-x)^{2}} \cdot(-1) \\
& =\frac{1}{(1-x)^{2}}
\end{aligned}
$$

Quiz \#3. Thursday, 8 October, 2009 (10 minutes)

1. Show that the sequence $y_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}-\ln (n)$ is decreasing. [5]

Solution. We will show that $y_{n+1}<y_{n}$ by considering $y_{n+1}-y_{n}$:

$$
\begin{aligned}
y_{n+1}-y_{n} & =\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n+1}-\ln (n+1)\right)-\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n)\right) \\
& =\frac{1}{n+1}-\ln (n+1)+\ln (n)=\frac{1}{n+1}-\ln \left(\frac{n+1}{n}\right)=\frac{1}{n+1}-\ln \left(1+\frac{1}{n}\right) \\
& =\frac{1}{n+1}-\left(\frac{1}{n}-\frac{1}{2}\left(\frac{1}{n}\right)^{2}+\frac{1}{3}\left(\frac{1}{n}\right)^{3}-\frac{1}{4}\left(\frac{1}{n}\right)^{4}+\cdots\right) \\
& =\frac{1}{n+1}-\frac{1}{n}+\frac{1}{2}\left(\frac{1}{n}\right)^{2}-\frac{1}{3}\left(\frac{1}{n}\right)^{3}+\frac{1}{4}\left(\frac{1}{n}\right)^{4}-\cdots \\
& =\left(\frac{1}{n+1}-\frac{1}{n}+\frac{1}{2 n^{2}}\right)+\left(-\frac{1}{3 n^{3}}+\frac{1}{4 n^{4}}\right)+\left(-\frac{1}{5 n^{5}}+\frac{1}{6 n^{6}}\right)+\cdots
\end{aligned}
$$

Note that all the groupings after the first in this sum are negative, since a larger (absolute) value for the denominator means a smaller (absolute) value for the fraction. The first grouping will be non-positive for $n \geq 1$ (which are the n s for which the definition of y_{n} makes sense) because

$$
\frac{1}{n+1}-\frac{1}{n}+\frac{1}{2 n^{2}}=\frac{2 n^{2}-2 n(n+1)+(n+1)}{2 n^{2}(n+1)}=\frac{1-n}{2 n^{2}(n+1)}
$$

which has a positive denominator and a numerator which is ≤ 0 when $n \geq 1$.
It follows that $y_{n+1}-y_{n}<0$, i.e. $y_{n+1}<y_{n}$, when $n \geq 1$.

Quiz \#4. Thursday, 15 Monday, 19 October, 2009
Do one of questions 1 and 2 .

1. Use Lagrange's Remainder Theorem to determine the number of terms of the of the partial sum for the power series expansion of $f(x)=\ln (1+x)$ that are needed to guarantee that the partial sum is within 0.1 of $\ln (2)=\ln (1+1)$. [5]
Hint: You may assume that the power series expansion of $f(x)$ is $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+$ $\cdots+\frac{(-1)^{n} x^{n}}{n}+\cdots$ and that $f^{(n)}(x)=\frac{(-1)^{n+1}(n-1)!}{(1+x)^{n}}$ for $n \geq 1$.
2. Use the Intermediate Value Theorem to show that every real number $\alpha>0$ has a square root. [5]
Hint: α has a square root if $f(x)=x^{2}$ takes on the value $\alpha \ldots$
Solution to 1. Recall from class or the text that

$$
f(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n} x^{n}}{n}+R_{n}(x),
$$

where, by Lagrange's Remainder Theorem, $R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}$ for some c between 0 and x.

For $\ln (2)=\ln (1+1)$ we have $x=1$, and $f^{(n+1)}(c)=\frac{(-1)^{n+2} n!}{(1+c)^{n+1}}$. This lets us estimate $\left|R_{n}(1)\right|$ using the Lagrange Remainder Theorem with some c such that $0<c<1$:

$$
\begin{aligned}
\left|R_{n}(1)\right| & =\left|\frac{f^{(n+1)}(c)}{(n+1)!} 1^{n+1}\right|=\left|\frac{(-1)^{n+2} n!}{(1+c)^{n+1}} \cdot \frac{1}{(n+1)!}\right| \\
& \left.=\frac{1}{(1+c)^{n+1}(n+1)} \right\rvert\, \\
& <\frac{1}{(1+0)^{n+1}(n+1)}=\frac{1}{n+1}
\end{aligned}
$$

We can therefore insure that $1-\frac{1^{2}}{2}+\frac{1^{3}}{3}-\frac{1^{4}}{4}+\cdots+\frac{(-1)^{n} 1^{n}}{n}$ is within 0.1 of $\ln (2)=$ $\ln (1+1)$ by ensuring that $\left|R_{n}(1)\right|<\frac{1}{n+1} \leq 0.1 \stackrel{4}{=} \frac{1}{10}$. It's pretty obvious that $\frac{1}{n+1} \leq \frac{1}{10}$ when $n+1 \geq 10$, i.e. when $n \geq 9$. Taking 9 or more terms of the power series therefore ensures that the partial sum is within 0.1 of $\ln (2)$.

Solution to 2. Note that $f(x)=x^{2}$ is continuous for all x and increasing for $x \geq 0$. Suppose α is a positive real number. Choose an integer n such that $n^{2}>\alpha . f(x)=x^{2}$ is a continuous function on $[0, n]$ and $f(0)=0^{2}=0<\alpha<n^{2}=f(n)$, so, by the Intermediate Value Theorem, there is a c with $0<c<n$ such that $c^{2}=f(c)=\alpha$. Thus c is a square root of α.

Quiz \#5. Thursday, 22 October, 2009 (10 minutes)

1. Suppose $f(x)$ is a function that is defined for all x near 0 and is continuous at 0 , and suppose c is a real number. Use the $\varepsilon-\delta$ definition of continuity to show that $g(x)=c f(x)$ is also continuous at 0 . [5]
Solution. First, assume $c \neq 0$ and suppose that $\varepsilon>0$. We need to find a $\delta>0$ such that for all x, if $|x-0|<\delta$, then $|g(x)-g(0)|<\varepsilon$. Observe that

$$
\begin{aligned}
|g(x)-g(0)|<\varepsilon & \Longleftrightarrow|c f(x)-c f(0)|<\varepsilon \\
& \Longleftrightarrow|c||f(x)-f(0)|<\varepsilon \\
& \Longleftrightarrow|f(x)-f(0)|<\frac{\varepsilon}{|c|},
\end{aligned}
$$

where the last step requires the assumption that $c \neq 0$. Since $f(x)$ is continuous at 0 , there is a $\delta>0$ such that for all x, if $|x-0|<\delta$, then $|f(x)-f(0)|<\frac{\varepsilon}{|c|}$. This last, however, is equivalent to $|g(x)-g(0)|<\varepsilon$. It follows that $g(x)$ is continuous if $c \neq 0$.

Second, assume $c=0$ and suppose that $\varepsilon>0$. Pick any $\delta>0$ you like and suppose $|x-0|<\delta$. Then $|g(x)-g(0)|=|0 f(x)-0 f(0)|=0|f(x)-f(0)|=0<\varepsilon$. It follows that $g(x)$ is also continuous if $c=0$.

Quiz \#6. Thursday, 12 November, 2009 (10 minutes)

1. Use the $\varepsilon-\delta$ definition of continuity to show that $g(x)=\frac{1}{3 x-1}$ is continuous at 1. [5] Solution. We need to check that for all $\varepsilon>0$ there is a $\delta>0$ such that if $|x-1|<\delta$, then $|g(x)-g(1)|<\varepsilon$. Note that $g(1)=\frac{1}{3 \cdot 1-1}=\frac{1}{2}$. Suppose $\varepsilon>0$ is given; we will attempt to reverse-engineer a $\delta>0$ for this ε.

$$
\begin{aligned}
|g(x)-g(1)| & =\left|\frac{1}{3 x-1}-\frac{1}{2}\right|=\left|\frac{2-(3 x-1)}{2(3 x-1)}\right| \\
& =\left|\frac{3-3 x}{6 x-2}\right|=\left|\frac{-3(x-1)}{6(x-1)+4}\right|
\end{aligned}
$$

If we require that $|x-1|<\frac{1}{2}$, i.e. that $\delta \leq \frac{1}{2}$, then the denominator of the last expression is bounded away from $0,1=-3+4 \leq 6(x-1)+4 \leq 3+4=7$. This, in turn, means that

$$
\frac{3|x-1|}{7} \leq\left|\frac{-3(x-1)}{6(x-1)+4}\right| \leq \frac{3|x-1|}{1}=3|x-1|
$$

Thus, if we set $\delta=\min \left(\frac{1}{2}, \frac{\varepsilon}{3}\right)$ and require that $|x-1|<\delta$, we will have that:

$$
|g(x)-g(1)|=\left|\frac{-3(x-1)}{6(x-1)+4}\right| \leq 3|x-1|<3 \delta \leq 3 \frac{\varepsilon}{3}=\epsilon
$$

Hence $g(x)$ is continuous at 1 .

Take-home Quiz \#7. Due on Monday, 16 November, 2009

1. Suppose $f(x)$ and $\mathrm{g}(\mathrm{x})$ are function that are defined and continuous for all x near a, and such that $g(a) \neq 0$. Use the $\varepsilon-\delta$ definition of continuity to show that $h(x)=\frac{f(x)}{g(x)}$ is also continuous at a. [5]
Solution.

Quiz \#8. Thursday, 19 November, 2009 (15 minutes)
You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges and that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Use the Comparison Test to determine whether or not each of the following series converges.

1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad[1.5]$
2. $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n^{2}}$
[1.5]
3. $\sum_{n=0}^{\infty} \frac{n}{n^{3}+1} \quad$ [2]

Solution to 1. $\sqrt{n} \leq n$ for all $n \geq 1$, so $0 \leq \frac{1}{n} \leq \frac{1}{\sqrt{n}}$ for all $n \geq 1$. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ also diverges.
Solution to 2. For all $n \geq 1,0 \leq \frac{\sin ^{2}(n)}{n^{2}} \leq \frac{1}{n^{2}}$ because $0 \leq \sin ^{2}(n) \leq 1$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, it follows by the Comparison Test that $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n^{2}}$ also converges.
Solution to 3. For all $n \geq 1, n^{3} \leq n^{3}+1$, so $\frac{1}{n^{3}+1} \leq \frac{1}{n^{3}}$. It follows that for all $n \geq 1$, $0 \leq \frac{n}{n^{3}+1} \leq \frac{n}{n^{3}}=\frac{1}{n^{2}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, it then follows by the Comparison Test that $\sum_{n=0}^{\infty} \frac{n}{n^{3}+1}$ also converges.

Quiz \#9. Thursday, 26 November, 2009 (12 minutes)

1. Use the (limit) ratio test to verify that $\sum_{n=0}^{\infty} \frac{\pi^{n}}{n!}$ converges absolutely. [2]
2. Use the convergence test(s) of your choice to determine whether $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges absolutely, converges conditionally, or diverges. [3]
Solution to 1. Here goes:

$$
\lim _{n \rightarrow \infty} \frac{\frac{\pi^{n+1}}{(n+1)!}}{\frac{\pi^{n}}{n!}}=\lim _{n \rightarrow \infty} \frac{\pi^{n+1}}{(n+1)!} \cdot \frac{n!}{\pi^{n}}=\lim _{n \rightarrow \infty} \frac{\pi}{n+1}=0<1
$$

It follows by the ratio Test that the series $\sum_{n=0}^{\infty} \frac{\pi^{n}}{n!}$ converges absolutely.
Solution to 2. $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ is obviously an alternating series. $(\ln (n)>0$ for $n \geq 2$ and $(-1)^{n}$ alternates sign, just in case it wasn't obvious ...) The absolute values of the terms of the series is decreasing: since $\ln (n+1)>\ln (n)$ for all n,

$$
\left|\frac{(-1)^{n+1}}{\ln (n+1)}\right|=\frac{1}{\ln (n+1)}<\frac{1}{\ln (n)}=\left|\frac{(-1)^{n}}{\ln (n)}\right|
$$

Moreover, it survives the Divergence Test: Since

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n}}{\ln (n)}\right|=\lim _{n \rightarrow \infty} \frac{1}{\ln (n)}=0
$$

because $\lim _{n \rightarrow \infty} \ln (n)=\infty$, we have $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\ln (n)}=0$ too. It follows that $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges by the Alternating Series Test.

It remains to determine whether the series converges absolutely or conditionally. The corresponding series of positive terms, $\sum_{n=2}^{\infty} \frac{1}{\ln (n)}$, diverges by comparison with the $\sum_{n=2}^{\infty} \frac{1}{n}$, which diverges (why?), because $0<\frac{1}{n}<\frac{1}{\ln (n)}$ since $\ln (n) \leq n$ for all $n \geq 2$. This means that $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ does not converge absolutely, so it must only converge conditionally (since it does, after all, converge).

Quiz \#10. Thursday, 3 December, 2009 (10 minutes)

1. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1}$. [5]

Solution. First, we find the radius of convergence using the (Limit) Ratio Test.

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n+1} x^{n+1}}{n+2}}{\frac{2^{n} x^{n}}{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{n+2} \cdot \frac{n+1}{2^{n} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2^{n+1} x^{n+1}}{2^{n} x^{n}} \cdot \frac{n+1}{n+2}\right| \\
& =\lim _{n \rightarrow \infty} 2|x| \cdot \frac{n+1}{n+2}=2|x| \cdot \lim _{n \rightarrow \infty} \frac{n+1}{n+2}=2|x| \cdot \lim _{n \rightarrow \infty} \frac{1+\frac{1}{n}}{1+\frac{2}{n}}=2|x| \cdot \frac{1+0}{1+0} \\
& =2|x|
\end{aligned}
$$

It follows by the (Limit) Ratio Test that the given series converges absolutely when $2|x|<1$, i.e. when $|x|<\frac{1}{2}$, and diverges when $2|x|>1$, i.e. when $|x|>\frac{1}{2}$. Hence the radius of convergence of the series is $R=\frac{1}{2}$.

It remains to determine what happens at the endpoints of the interval of convergence, i.e. when $x= \pm R= \pm \frac{1}{2}$. When we plug in $x=\frac{1}{2}$, we get the series

$$
\sum_{n=0}^{\infty} \frac{2^{n}\left(\frac{1}{2}\right)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{1}{n+1}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots
$$

This is just the harmonic series, which we know diverges by the p-Test. On the other hand, when we plug in $x=-\frac{1}{2}$, we get the series

$$
\sum_{n=0}^{\infty} \frac{2^{n}\left(-\frac{1}{2}\right)^{n}}{n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n+1}=-1+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\cdots
$$

This is the negative of the alternating harmonic series, which we know converges by the Alternating Series Test.

Hence the interval of convergence of the given series is $\left[-\frac{1}{2}, \frac{1}{2}\right)$.

Quiz \#11. Thursday, 11 December, $2009 \quad(10$ minutes)

1. Show that the functions $f_{n}(x)=1+x^{n}$ converge uniformly to $f(x)=1$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. [5]
Solution. We need to show that for any $\varepsilon>0$, there is an N such that for all $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, $\left|f_{n}(x)-f(x)\right|<\varepsilon$.

Note first that for any $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$, we have $|x| \leq \frac{1}{2}$. It follows that

$$
\left|f_{n}(x)-f(x)\right|=\left|1+x^{n}-1\right|=\left|x^{n}\right|=|x|^{n} \leq\left(\frac{1}{2}\right)^{n}=\frac{1}{2^{n}} .
$$

Now suppose that $\varepsilon>0$ is given. Choose N such that $\frac{1}{2^{N}}<\varepsilon$. Then, for any $n \geq N$, we have that $2^{n} \geq 2^{N}$, and so for any $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$,

$$
\left|f_{n}(x)-f(x)\right| \leq \frac{1}{2^{n}} \leq \frac{1}{2^{N}}<\varepsilon
$$

Thus the sequence of functions $f_{n}(x)=1+x^{n}$ converges uniformly to $f(x)=1$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$, as desired.

