
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2009

Solutions to the quizzes

Quiz #1. Thursday, 24 September, 2009 (10 minutes)

The series
∞∑
n=0

1
2n = 1 + 1

2 + 1
4 + 1

8 + · · · sums to 2. Denote the kth partial sum of this

series by Sk =
k∑

n=0

1
2n = 1 + 1

2 + 1
4 + 1

8 + · · ·+ 1
2k

.

1. Show that Sk < 2 for every k ≥ 0. [2]

2, How large does k need to be to ensure that the partial sum Sk =
k∑

n=0

1
2n of this series

is within 0.001 of 2? [3]

Hints: First, what, exactly, is 2− Sk? Second, note that 210 = 1024.

Solutions. The first question is over with very quickly if you remember the formula for
the sum of a finite geometric series. The solution below does it in a brutally simple-minded
way instead.

1. Consider the first few values of 2− Sk = 2−
(
1 + 1

2 + 1
4 + 1

8 + · · ·+ 1
2k

)
,

2− S0 = 2− 1 = 0

2− S1 = 2−
(

1 +
1

2

)
=

1

2

2− S2 = 2−
(

1 +
1

2
+

1

4

)
=

1

4

2− S3 = 2−
(

1 +
1

2
+

1

4
+

1

8

)
=

1

8
,

and observe that in each case 2 − Sk = 1
2k

, which is the last term in Sk. It isn’t too
hard to check that this is true in general. For example,

Sk +
1

2k
=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k

)
+

1

2k

=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k−1

)
+

(
1

2k
+

1

2k

)
=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k−1

)
+

1

2k−1

=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k−2

)
+

(
1

2k−1
+

1

2k−1

)
=

(
1 +

1

2
+

1

4
+

1

8
+ · · ·+ 1

2k−2

)
+

1

2k−2

...

=

(
1 +

1

2
+

1

4

)
+

1

4
=

(
1 +

1

2

)
+

1

2
= 1 + 1 = 2 .
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Since 2− Sk = 1
2k
> 0 for every k ≥ 0, we must have Sk < 2 for every k ≥ 0. �

2. We need to find out for which values of k we have 2 − Sk < 0.001 = 1
1000 . From

our work in question 1, we know that 2− Sk = 1
2k

, so we are looking for the ks such

that 1
2k

< 1
1000 , i.e. such that 2k > 1000. Since 2k is an increasing function of k,

29 = 512 < 1000, and 210 = 1024 > 1000, it follows that 2−Sk < 0.001 for all k ≥ 10,
but not for 0 ≤ k ≤ 9.

Thus k needs to be at least 10 to ensure that 2− Sk < 0.001. �
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Quiz #2. Thursday, 1 October, 2009 (10 minutes)

You may assume that
∞∑
n=0

xn = 1 + x + x2 + x3 + · · · converges to 1
1−x for |x| < 1.

Find the sum of each of the following series for |x| < 1:

1.
∞∑
n=0

(−1)nx2n+1

2n+1 = x− x3

3 + x5

5 −
x7

7 + · · · [2]

2.
∞∑
n=0

(n+ 1)xn = 1 + 2x+ 3x2 + 4x3 + · · · [3]

Hints: Substitution. Calculus.

Solutions. We will obtain both sums by modifying the given geometric series using sub-
stitution and/or calculus, after a little bit of reverse-engineering on the series in questions
1 and 2.

1. Note that

d

dx

∞∑
n=0

(−1)nx2n+1

2n+ 1
=

d

dx

(
x− x3

3
+
x5

5
− x7

7
+ · · ·

)
=

d

dx
x− d

dx

x3

3
+

d

dx

x5

5
− d

dx

x7

7
+ · · ·

= 1− x2 + x4 − x6 + · · ·

This is a geometric series with initial term 1 and common ratio −x2, which therefore
sums to 1

1−(−x2) = 1
1+x2 . It follows that, up to a constant C,

∞∑
n=0

(−1)nx2n+1

2n+ 1
=

∫ (
1− x2 + x4 − x6 + · · ·

)
dx =

∫
1

1 + x2
dx = C + arctan(x) .

Since arctan(0) = 0 =
∞∑
n=0

(−1)n02n+1

2n+1 , the constant of integration turns out to be 0,

and so
∞∑
n=0

(−1)nx2n+1

2n+ 1
= arctan(x) . �

2. Note that, up to a constant C,

∫ ( ∞∑
n=0

(n+ 1)xn

)
dx =

∫ (
1 + 2x+ 3x2 + 4x3 + · · ·

)
dx

=

∫
1 dx+

∫
2x dx+

∫
3x2 dx+

∫
4x3 dx+ · · ·

= C + x+ x2 + x3 + x4 + · · ·
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We could optimistically assume that C = 1, making the sum of the last series 1
1−x ,

and get away with it because C will disappear in what follows:

∞∑
n=0

(n+ 1)xn =
d

dx

(
C + x+ x2 + x3 + x4 + · · ·

)
=

d

dx

(
1 + x+ x2 + x3 + x4 + · · ·

)
(Since d

dxC = 0 = d
dx1.)

=
d

dx

(
1

1− x

)
=

−1

(1− x)2
· d
dx

(1− x)

=
−1

(1− x)2
· (−1)

=
1

(1− x)2
�
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Quiz #3. Thursday, 8 October, 2009 (10 minutes)

1. Show that the sequence yn = 1 + 1
2 + 1

3 + 1
4 + · · ·+ 1

n − ln(n) is decreasing. [5]

Solution. We will show that yn+1 < yn by considering yn+1 − yn:

yn+1 − yn =

(
1 +

1

2
+

1

3
+ · · ·+ 1

n+ 1
− ln(n+ 1)

)
−
(

1 +
1

2
+

1

3
+ · · ·+ 1

n
− ln(n)

)
=

1

n+ 1
− ln(n+ 1) + ln(n) =

1

n+ 1
− ln

(
n+ 1

n

)
=

1

n+ 1
− ln

(
1 +

1

n

)
=

1

n+ 1
−

(
1

n
− 1

2

(
1

n

)2

+
1

3

(
1

n

)3

− 1

4

(
1

n

)4

+ · · ·

)

=
1

n+ 1
− 1

n
+

1

2

(
1

n

)2

− 1

3

(
1

n

)3

+
1

4

(
1

n

)4

− · · ·

=

(
1

n+ 1
− 1

n
+

1

2n2

)
+

(
− 1

3n3
+

1

4n4

)
+

(
− 1

5n5
+

1

6n6

)
+ · · ·

Note that all the groupings after the first in this sum are negative, since a larger (absolute)
value for the denominator means a smaller (absolute) value for the fraction. The first
grouping will be non-positive for n ≥ 1 (which are the ns for which the definition of yn
makes sense) because

1

n+ 1
− 1

n
+

1

2n2
=

2n2 − 2n(n+ 1) + (n+ 1)

2n2(n+ 1)
=

1− n
2n2(n+ 1)

,

which has a positive denominator and a numerator which is ≤ 0 when n ≥ 1.
It follows that yn+1 − yn < 0, i.e. yn+1 < yn, when n ≥ 1. �
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Quiz #4. Thursday, 15 Monday, 19 October, 2009 (10 minutes)

Do one of questions 1 and 2.

1. Use Lagrange’s Remainder Theorem to determine the number of terms of the of the
partial sum for the power series expansion of f(x) = ln(1 + x) that are needed to
guarantee that the partial sum is within 0.1 of ln(2) = ln(1 + 1). [5]

Hint: You may assume that the power series expansion of f(x) is x− x2

2 + x3

3 −
x4

4 +

· · ·+ (−1)nxn

n + · · · and that f (n)(x) = (−1)n+1(n−1)!
(1+x)n for n ≥ 1.

2. Use the Intermediate Value Theorem to show that every real number α > 0 has a
square root. [5]

Hint: α has a square root if f(x) = x2 takes on the value α . . .

Solution to 1. Recall from class or the text that

f(x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)nxn

n
+Rn(x) ,

where, by Lagrange’s Remainder Theorem, Rn(x) = f(n+1)(c)
(n+1)! x

n+1 for some c between 0

and x.
For ln(2) = ln(1 + 1) we have x = 1, and f (n+1)(c) = (−1)n+2n!

(1+c)n+1 . This lets us estimate

|Rn(1)| using the Lagrange Remainder Theorem with some c such that 0 < c < 1:

|Rn(1)| =
∣∣∣∣f (n+1)(c)

(n+ 1)!
1n+1

∣∣∣∣ =

∣∣∣∣ (−1)n+2n!

(1 + c)n+1
· 1

(n+ 1)!

∣∣∣∣
=

1

(1 + c)n+1(n+ 1)

<
1

(1 + 0)n+1(n+ 1)
=

1

n+ 1

We can therefore insure that 1− 12

2 + 13

3 −
14

4 + · · ·+ (−1)n1n
n is within 0.1 of ln(2) =

ln(1 + 1) by ensuring that |Rn(1)| < 1
n+1 ≤ 0.1 = 1

10 . It’s pretty obvious that 1
n+1 ≤

1
10

when n + 1 ≥ 10, i.e. when n ≥ 9. Taking 9 or more terms of the power series therefore
ensures that the partial sum is within 0.1 of ln(2). �

Solution to 2. Note that f(x) = x2 is continuous for all x and increasing for x ≥ 0.
Suppose α is a positive real number. Choose an integer n such that n2 > α. f(x) = x2 is a
continuous function on [0, n] and f(0) = 02 = 0 < α < n2 = f(n), so, by the Intermediate
Value Theorem, there is a c with 0 < c < n such that c2 = f(c) = α. Thus c is a square
root of α. �
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Quiz #5. Thursday, 22 October, 2009 (10 minutes)

1. Suppose f(x) is a function that is defined for all x near 0 and is continuous at 0,
and suppose c is a real number. Use the ε − δ definition of continuity to show that
g(x) = cf(x) is also continuous at 0. [5]

Solution. First, assume c 6= 0 and suppose that ε > 0. We need to find a δ > 0 such
that for all x, if |x− 0| < δ, then |g(x)− g(0)| < ε. Observe that

|g(x)− g(0)| < ε⇐⇒ |cf(x)− cf(0)| < ε

⇐⇒ |c| |f(x)− f(0)| < ε

⇐⇒ |f(x)− f(0)| < ε

|c|
,

where the last step requires the assumption that c 6= 0. Since f(x) is continuous at 0, there
is a δ > 0 such that for all x, if |x− 0| < δ, then |f(x)− f(0)| < ε

|c| . This last, however, is

equivalent to |g(x)− g(0)| < ε. It follows that g(x) is continuous if c 6= 0.
Second, assume c = 0 and suppose that ε > 0. Pick any δ > 0 you like and suppose

|x − 0| < δ. Then |g(x)− g(0)| = |0f(x)− 0f(0)| = 0 |f(x)− f(0)| = 0 < ε. It follows
that g(x) is also continuous if c = 0. �
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Quiz #6. Thursday, 12 November, 2009 (10 minutes)

1. Use the ε− δ definition of continuity to show that g(x) = 1
3x−1 is continuous at 1. [5]

Solution. We need to check that for all ε > 0 there is a δ > 0 such that if |x − 1| < δ,
then |g(x)− g(1)| < ε. Note that g(1) = 1

3·1−1 = 1
2 . Suppose ε > 0 is given; we will

attempt to reverse-engineer a δ > 0 for this ε.

|g(x)− g(1)| =
∣∣∣∣ 1

3x− 1
− 1

2

∣∣∣∣ =

∣∣∣∣2− (3x− 1)

2(3x− 1)

∣∣∣∣
=

∣∣∣∣3− 3x

6x− 2

∣∣∣∣ =

∣∣∣∣ −3(x− 1)

6(x− 1) + 4

∣∣∣∣
If we require that |x− 1| < 1

2 , i.e. that δ ≤ 1
2 , then the denominator of the last expression

is bounded away from 0, 1 = −3 + 4 ≤ 6(x− 1) + 4 ≤ 3 + 4 = 7. This, in turn, means that

3|x− 1|
7

≤
∣∣∣∣ −3(x− 1)

6(x− 1) + 4

∣∣∣∣ ≤ 3|x− 1|
1

= 3|x− 1|

Thus, if we set δ = min
(
1
2 ,

ε
3

)
and require that |x− 1| < δ, we will have that:

|g(x)− g(1)| =
∣∣∣∣ −3(x− 1)

6(x− 1) + 4

∣∣∣∣ ≤ 3|x− 1| < 3δ ≤ 3
ε

3
= ε

Hence g(x) is continuous at 1. �
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Take-home Quiz #7. Due on Monday, 16 November, 2009

1. Suppose f(x) and g(x) are function that are defined and continuous for all x near a,

and such that g(a) 6= 0. Use the ε−δ definition of continuity to show that h(x) = f(x)
g(x)

is also continuous at a. [5]

Solution. �
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Quiz #8. Thursday, 19 November, 2009 (15 minutes)

You may assume that the series
∞∑
n=1

1
n2 converges and that the series

∞∑
n=1

1
n diverges.

Use the Comparison Test to determine whether or not each of the following series converges.

1.
∞∑
n=1

1√
n

[1.5] 2.
∞∑
n=1

sin2(n)
n2 [1.5] 3.

∞∑
n=0

n
n3+1 [2]

Solution to 1.
√
n ≤ n for all n ≥ 1, so 0 ≤ 1

n ≤
1√
n

for all n ≥ 1. Since
∞∑
n=1

1
n diverges,

it follows by the Comparison Test that
∞∑
n=1

1√
n

also diverges. �

Solution to 2. For all n ≥ 1, 0 ≤ sin2(n)
n2 ≤ 1

n2 because 0 ≤ sin2(n) ≤ 1. Since
∞∑
n=1

1
n2

converges, it follows by the Comparison Test that
∞∑
n=1

sin2(n)
n2 also converges. �

Solution to 3. For all n ≥ 1, n3 ≤ n3 + 1, so 1
n3+1 ≤

1
n3 . It follows that for all n ≥ 1,

0 ≤ n
n3+1 ≤

n
n3 = 1

n2 . Since
∞∑
n=1

1
n2 converges, it then follows by the Comparison Test that

∞∑
n=0

n
n3+1 also converges. �
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Quiz #9. Thursday, 26 November, 2009 (12 minutes)

1. Use the (limit) ratio test to verify that
∞∑
n=0

πn

n!
converges absolutely. [2]

2. Use the convergence test(s) of your choice to determine whether

∞∑
n=2

(−1)n

ln(n)
converges

absolutely, converges conditionally, or diverges. [3]

Solution to 1. Here goes:

lim
n→∞

πn+1

(n+1)!
πn

n!

= lim
n→∞

πn+1

(n+ 1)!
· n!

πn
= lim
n→∞

π

n+ 1
= 0 < 1

It follows by the ratio Test that the series
∞∑
n=0

πn

n!
converges absolutely. �

Solution to 2.

∞∑
n=2

(−1)n

ln(n)
is obviously an alternating series. (ln(n) > 0 for n ≥ 2 and

(−1)n alternates sign, just in case it wasn’t obvious . . . ) The absolute values of the terms
of the series is decreasing: since ln(n+ 1) > ln(n) for all n,∣∣∣∣ (−1)n+1

ln(n+ 1)

∣∣∣∣ =
1

ln(n+ 1)
<

1

ln(n)
=

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ .
Moreover, it survives the Divergence Test: Since

lim
n→∞

∣∣∣∣ (−1)n

ln(n)

∣∣∣∣ = lim
n→∞

1

ln(n)
= 0

because lim
n→∞

ln(n) =∞, we have lim
n→∞

(−1)n

ln(n)
= 0 too. It follows that

∞∑
n=2

(−1)n

ln(n)
converges

by the Alternating Series Test.
It remains to determine whether the series converges absolutely or conditionally. The

corresponding series of positive terms,

∞∑
n=2

1

ln(n)
, diverges by comparison with the

∞∑
n=2

1

n
,

which diverges (why?), because 0 <
1

n
<

1

ln(n)
since ln(n) ≤ n for all n ≥ 2. This means

that

∞∑
n=2

(−1)n

ln(n)
does not converge absolutely, so it must only converge conditionally (since

it does, after all, converge). �
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Quiz #10. Thursday, 3 December, 2009 (10 minutes)

1. Find the interval of convergence of the power series
∞∑
n=0

2nxn

n+ 1
. [5]

Solution. First, we find the radius of convergence using the (Limit) Ratio Test.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 2
n+1xn+1

n+2
2nxn

n+1

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1xn+1

n+ 2
· n+ 1

2nxn

∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1xn+1

2nxn
· n+ 1

n+ 2

∣∣∣∣
= lim
n→∞

2|x| · n+ 1

n+ 2
= 2|x| · lim

n→∞

n+ 1

n+ 2
= 2|x| · lim

n→∞

1 + 1
n

1 + 2
n

= 2|x| · 1 + 0

1 + 0

= 2|x|

It follows by the (Limit) Ratio Test that the given series converges absolutely when 2|x| < 1,
i.e. when |x| < 1

2 , and diverges when 2|x| > 1, i.e. when |x| > 1
2 . Hence the radius of

convergence of the series is R = 1
2 .

It remains to determine what happens at the endpoints of the interval of convergence,
i.e. when x = ±R = ± 1

2 . When we plug in x = 1
2 , we get the series

∞∑
n=0

2n
(
1
2

)n
n+ 1

=

∞∑
n=0

1

n+ 1
= 1 +

1

2
+

1

3
+

1

4
+ · · · .

This is just the harmonic series, which we know diverges by the p-Test. On the other hand,
when we plug in x = − 1

2 , we get the series

∞∑
n=0

2n
(
− 1

2

)n
n+ 1

=
∞∑
n=0

(−1)n+1

n+ 1
= −1 +

1

2
− 1

3
+

1

4
− · · · .

This is the negative of the alternating harmonic series, which we know converges by the
Alternating Series Test.

Hence the interval of convergence of the given series is
[
− 1

2 ,
1
2

)
. �
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Quiz #11. Thursday, 11 December, 2009 (10 minutes)

1. Show that the functions fn(x) = 1+xn converge uniformly to f(x) = 1 on the interval[
− 1

2 ,
1
2

]
. [5]

Solution. We need to show that for any ε > 0, there is an N such that for all x ∈
[
− 1

2 ,
1
2

]
,

|fn(x)− f(x)| < ε.
Note first that for any x ∈

[
− 1

2 ,
1
2

]
, we have |x| ≤ 1

2 . It follows that

|fn(x)− f(x)| = |1 + xn − 1| = |xn| = |x|n ≤
(

1

2

)n
=

1

2n
.

Now suppose that ε > 0 is given. Choose N such that 1
2N

< ε. Then, for any n ≥ N , we

have that 2n ≥ 2N , and so for any x ∈
[
− 1

2 ,
1
2

]
,

|fn(x)− f(x)| ≤ 1

2n
≤ 1

2N
< ε .

Thus the sequence of functions fn(x) = 1 + xn converges uniformly to f(x) = 1 on
the interval

[
− 1

2 ,
1
2

]
, as desired. �
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