Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009

Quizzes

Quiz \#1. Thursday, 24 September, 2009 (10 minutes)
The series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots$ sums to 2 . Denote the k th partial sum of this series by $S_{k}=\sum_{n=0}^{k} \frac{1}{2^{n}}=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\cdots+\frac{1}{2^{k}}$.

1. Show that $S_{k}<2$ for every $k \geq 0$. [2]

2, How large does k need to be to ensure that the partial sum $S_{k}=\sum_{n=0}^{k} \frac{1}{2^{n}}$ of this series is within 0.001 of 2? [3]
Hints: First, what, exactly, is $2-S_{k}$? Second, note that $2^{10}=1024$.
Quiz \#2. Thursday, 1 October, 2009 (10 minutes)
You may assume that $\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$ converges to $\frac{1}{1-x}$ for $|x|<1$.
Find the sum of each of the following series for $|x|<1$:

1. $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$ [2]
2. $\sum_{n=0}^{\infty}(n+1) x^{n}=1+2 x+3 x^{2}+4 x^{3}+\cdots$ [3]

Hints: Substitution. Calculus.
Quiz \#3. Thursday, 8 October, 2009 (10 minutes)

1. Show that the sequence $y_{n}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln (n)$ is decreasing. [5]

Quiz \#4. Thursday, 15 Monday, 19 October, 2009 (10 minutes)
Do one of questions 1 and 2 .

1. Use Lagrange's Remainder Theorem to determine the number of terms of the of the partial sum for the power series expansion of $f(x)=\ln (1+x)$ that are needed to guarantee that the partial sum is within 0.1 of $\ln (2)=\ln (1+1)$. [5]
Hint: You may assume that the power series expansion of $f(x)$ is $x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+$ $\cdots+\frac{(-1)^{n} x^{n}}{n}+\cdots$ and that $f^{(n)}(x)=\frac{(-1)^{n+1}(n-1)!}{(1+x)^{n}}$ for $n \geq 1$.
2. Use the Intermediate Value Theorem to show that every real number $\alpha>0$ has a square root. [5]
Hint: α has a square root if $f(x)=x^{2}$ takes on the value $\alpha \ldots$

Quiz \#5. Thursday, 22 October, 2009 (10 minutes)

1. Suppose $f(x)$ is a function that is defined for all x near 0 and is continuous at 0 , and suppose c is a real number. Use the $\varepsilon-\delta$ definition of continuity to show that $g(x)=c f(x)$ is also continuous at 0 . [5]

Quiz \#6. Thursday, 12 November, 2009 (10 minutes)

1. Use the $\varepsilon-\delta$ definition of continuity to show that $g(x)=\frac{1}{3 x-1}$ is continuous at 1 . [5]

Take-home Quiz \#7. Due on Monday, 16 November, 2009

1. Suppose $f(x)$ and $\mathrm{g}(\mathrm{x})$ are functions that are defined and continuous for all x near a, and such that $g(a) \neq 0$. Use the $\varepsilon-\delta$ definition of continuity to show that $h(x)=\frac{f(x)}{g(x)}$ is also continuous at a. [5]

Quiz \#8. Thursday, 19 November, 2009 (15 minutes)
You may assume that the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges and that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges. Use the Comparison Test to determine whether or not each of the following series converges.

1. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \quad[1.5]$
2. $\sum_{n=1}^{\infty} \frac{\sin ^{2}(n)}{n^{2}}$
[1.5]
3. $\sum_{n=0}^{\infty} \frac{n}{n^{3}+1} \quad$ [2]

Quiz \#9. Thursday, 26 November, 2009 (12 minutes)

1. Use the (limit) ratio test to verify that $\sum_{n=0}^{\infty} \frac{\pi^{n}}{n!}$ converges absolutely. [2]
2. Use the convergence test(s) of your choice to determine whether $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}$ converges absolutely, converges conditionally, or diverges. [3]

Quiz \#10. Thursday, 3 December, $2009 \quad$ (10 minutes)

1. Find the interval of convergence of the power series $\sum_{n=0}^{\infty} \frac{2^{n} x^{n}}{n+1}$. [5]

Quiz \#11. Thursday, 11 December, $2009 \quad(10$ minutes)

1. Show that the functions $f_{n}(x)=1+x^{n}$ converge uniformly to $f(x)=1$ on the interval $\left[-\frac{1}{2}, \frac{1}{2}\right]$. [5]
