Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2009

Assignment \#4

Due: Thursday, 12 November, 2009

A function from heck.

We first need a bit of notation. If x is a real number, let

$$
\begin{aligned}
\{x\} & =\text { the distance from } x \text { to the nearest integer } \\
& =\min (x-\lfloor x\rfloor,\lceil x\rceil-x) .
\end{aligned}
$$

Note that for any real number $x, 0 \leq\{x\} \leq \frac{1}{2}$. It will be handy later on to have a couple of basic facts about $\{x\}$ in hand.

1. For all $x \in \mathbb{R},\left\{x \pm \frac{1}{2}\right\}=\frac{1}{2}-\{x\}$. [1]
2. For all $x, y \in \mathbb{R},\{x+y\} \leq\{x\}+\{y\}$ and $\{x\}-\{y\} \leq\{x-y\}$. [1]

Here's the function from heck. For any real number x, let

$$
g(x)=\sum_{n=0}^{\infty} \frac{\{n!x\}}{n!} .
$$

One needs to check that this definition* really makes sense:
3. Use the Comparison Test (see Chapter 4 in the text) to verify that the series defining $g(x)$ converges no matter what x we pick. [2]

Note that $g(x) \geq 0$ for all $x \in \mathbb{R}$. It turns out that $g(x)$ is continuous but not differentiable at every point:
4. Show that $g(x)$ is continuous at $x=a$ for all $a \in \mathbb{R}$. [4]

Hint: Given an $\varepsilon>0$, first choose an N such that $\sum_{n=N+1}^{\infty} \frac{\{n!x\}}{n!}<\frac{\varepsilon}{4}$. (Note that this can be done independently of the value of $x \ldots$) Then go to work on $\sum_{n=0}^{N} \frac{\{n!x\}}{n!}-\sum_{n=0}^{N} \frac{\{n!a\}}{n!}$.
5. Show that $g(x)$ is not differentiable at $x=0$. [2]

Hint: The idea is to construct a sequence $a_{n} \rightarrow 0$ such that $\left|\frac{g\left(a_{n}\right)-g(0)}{a_{n}-0}\right|=\left|\frac{g\left(a_{n}\right)}{a_{n}}\right| \geq 1$ for all n.

Bonus Problems. You have until Friday, 11 December, to get these in!
6. Show that $g(x)$ is not differentiable at $x=a$ for all $a \in \mathbb{R}$. [2]
7. At which points x is $g(x)=0$? [1]
8. At which points x is $g(x)$ rational? [2]

[^0]
[^0]: * This function is adapted from one with similar properties given in Michael Spivak's Calculus.

