Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2008
Assignment \#3
The integral form of the remainder of a Taylor series
Due: Thursday, 22 October, 2009
Suppose that a is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and all values of x we may encounter. The Taylor polynomial of degree n of $f(x)$ at a is defined to be

$$
\begin{aligned}
T_{n, a}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

and the corresponding remainder term is

$$
f(x)=T_{n, a}(x)+R_{n, a}(x) \text {, i.e. } R_{n, a}(x)=f(x)-T_{n, a}(x) .
$$

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0, a}(x)=\int_{a}^{x} f^{\prime}(t) d t
$$

2. Use induction (and some calculus!) to show that

$$
R_{n, a}=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

for $n \geq 0$. (This is the integral form of the remainder of a Taylor series.) [5]
3. Deduce the Lagrange Remainder Theorem from 2. [4]

Note: For $\mathbf{3}$ you may assume the Mean Value Theorem for Integrals:
If $f(x)$ is continuous on $[a, b]$ and $g(x)$ is integrable and non-negative (or non-positive) on $[a, b]$, then

$$
\int_{a}^{b} f(x) g(x) d x=f(\xi) \int_{a}^{b} g(x) d x
$$

for some $\xi \in[a, b]$.

