Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2008

Assignment #3
The integral form of the remainder of a Taylor series
Due: Thursday, 22 October, 2009

Suppose that a is a real number and f(z) is a function such that f(™(z) is defined
and continuous for all n > 0 and all values of x we may encounter. The Taylor polynomial
of degree n of f(x) at a is defined to be
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and the corresponding remainder term is

f(z) =T, o(x) + Ryo(x), te. Ry o(x) = f(x) — Tholz) .

1. Use the Fundamental Theorem of Calculus to show that
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2. Use induction (and some calculus!) to show that
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for n > 0. (This is the integral form of the remainder of a Taylor series.) [5]

3. Deduce the Lagrange Remainder Theorem from 2. [//

Note: For 3 you may assume the Mean Value Theorem for Integrals:

If f(z) is continuous on [a, b] and g(z) is integrable and non-negative
(or non-positive) on [a, b], then
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for some ¢ € [a, b].



