Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis
 Trent University, Fall 2009

Assignment \#2 - Series Business

Due on Thursday, 8 October, 2009.

For questions $\mathbf{1}$ and 2, assume that we know that

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

for all $x \in \mathbb{R}$.

1. Work out the power series for a^{x}, where a is a positive real number. [3]
2. Show that $e^{s+t}=e^{s} e^{t}$ by doing algebra with the appropriate power series. [4]
3. The modern (and Archimedean!) meaning of "the series $\sum_{i=0}^{\infty} a_{i}$ converges to A " is usually captured by a definition like:
(*) $\sum_{i=0}^{\infty} a_{i}$ converges to A if for every $\varepsilon>0$ there is a K such that for all $k \geq K$ we have $\left|\left(\sum_{i=0}^{k} a_{i}\right)-A\right|<\varepsilon$.
Archimedes himself would probably have said something more along the following lines:
(•) $\sum_{i=0}^{\infty} a_{i}$ converges to A if both
(1) for every $L<A$ there is a K such that for all $k \geq K$ we have $L<\left(\sum_{i=0}^{k} a_{i}\right)$, and
(2) for every $U>A$ there is a K^{\prime} such that for all $k \geq K^{\prime}$ we have $\left(\sum_{i=0}^{k} a_{i}\right)<U$.

Explain, in detail, why these two definitions are actually equivalent. [3]

