Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2008

Solutions to Assignment #6

Suppose a, 3, and 7y are any real numbers not in Z<° = {0, —1, -2, ...}, and consider
the following power series:
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This is what used to be called a hypergeometric series before the more general definition
used in our textbook came along.

1. Why are the constants «, 3, and v not allowed to be 0 or any negative integer in the
definition above? [1]

Solution. If v were allowed to be 0 or a negative integer, then one would eventually be
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On the other hand, if a or 3 were allowed to be 0 or a negative integer, then the coefﬁment

of ™ would eventually always be 0, making the series a polynomial. This is, presumably,
a little less interesting. W

dividing by 0 in the expression

2. Determine for which values of x this series respectively converges absolutely, converges
conditionally, and diverges. [9/

Solution. We will use the Ratio Test to find the radius of convergence, R, of the series,
and then, if R < oo, examine the endpoints, —R and R, of the interval of convergence to
see what the series does there.
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It follows by the Ratio Test that the series converges absolutely when |z| < 1 and diverges
when |z| > 1, so the radius of convergence of this series is R = 1.
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It remains to determine whether, and how, the series converges at the endpoints of

the interval of convergence, x+ = —1 and « = 1. Note that because % > () once
n is large enough, the series eventually alternates when x = —1, but is eventually always

positive when x = 1. We will use Gauss’ Test to see what happens at these points, since
we know from the work above that when |z| =1,
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which is a ratio of monic polynomials of the same degree. The key is to compare the
coefficients of the next-to-lowest powers of n in the numerator, a4+ 3, and the denominator,

v+ 1.
By parts 1 and 2 of Gauss’ Test, the series diverges for x = +1 when aa + 3 > v + 1;
by parts 3 and 4, it converges (conditionally) at z = —1 but diverges at + = 1 when

vy=(y+1)—1<a+ [ <~v+1; and by part 5, it converges absolutely for z = +1 when
a+pB<(y+1)—1=~. Whew! R



