Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2008

Solutions to Assignment #4
Math Trek: Dilithium? No, dilogarithm!

The dilogarithm function, Lis(z), is usually defined as the sum of an infinite series:
> x x x
Lig(x) =) G =a+—+"=+—=+...

To answer the questions below you will probably want to review the basic information on
convergence of series from your first-year calculus text, especially the (simplest forms of
the) Comparison Test and the Integral Test.

1. Show that the series defining Lis(x) converges for all x with —1 < x < 1. [3]

Solution. If -1 < z < 1, then |—‘ < .7. Since the series Z —3 is known to converge (to

%, see Assignment #1), it follows that Z + converges absolutely (and hence converges)

for -1 <zxz<1. 1
2. How is the dilogarithm function related to the natural logarithm function? /3]

Solution. Recall that
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which is a lot like the series defining Lis(x),
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except for the minus sign in front and the fact that the denominators are n instead of
n?. We can make the the series for Liz(x) look more like that for In(1 — ) by taking its
derivative:
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This is almost the same, except for the minus sign in front and a surplus power of x in
every term, which problems are easy to fix:
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For those who dislike dividing by zero*, this can be rearranged a little:

d
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There is also, of course, a corresponding integral formula ... H

3. Denote the kth remainder term at 0 of the dilogarithm function by:
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Show that for any & > 0 there is an K > 0 such that for any k > K, |Ry o(x)| < ¢ for
all z with —1 <z <1. [}/

Solution. First, note that:
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Second, reusing the observations from the solution to 1, when —1 < z < 1, we get:
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Third, recall that > -% is a series of positive terms converging to ”— If Sp= > & is
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the kth partial sum, it follows that S; < Sy < S3 < -+ < %2 and that klim Sp = &

This means that given an € > 0, there is a K > 0 such that for any k > K, — %2

%2 — Sk < e. Finally, it now follows that:
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Friends don’t let friends divide by zero!



