
Mathematics 3790H – Analysis I: Introduction to analysis
Trent University, Fall 2008

Solutions to Assignment #4
Math Trek: Dilithium? No, dilogarithm!

The dilogarithm function, Li2(x), is usually defined as the sum of an infinite series:

Li2(x) =
∞∑
n=1

xn

n2
= x+

x2

4
+
x3

9
+
x4

16
+ . . .

To answer the questions below you will probably want to review the basic information on
convergence of series from your first-year calculus text, especially the (simplest forms of
the) Comparison Test and the Integral Test.

1. Show that the series defining Li2(x) converges for all x with −1 ≤ x ≤ 1. [3]

Solution. If −1 ≤ x ≤ 1, then
∣∣xn

n2

∣∣ ≤ 1
n2 . Since the series

∞∑
n=1

1
n2 is known to converge (to

π2

6 ; see Assignment #1), it follows that
∞∑
n=1

xn

n2 converges absolutely (and hence converges)

for −1 ≤ x ≤ 1. �

2. How is the dilogarithm function related to the natural logarithm function? [3]

Solution. Recall that

ln(1− x) = −
∞∑
n=1

xn

n
= −

(
x+

x2

2
+
x3

3
+
x4

4
+ . . .

)
,

which is a lot like the series defining Li2(x),

Li2(x) =
∞∑
n=1

xn

n2
= x+

x2

4
+
x3

9
+
x4

16
+ . . . ,

except for the minus sign in front and the fact that the denominators are n instead of
n2. We can make the the series for Li2(x) look more like that for ln(1 − x) by taking its
derivative:

d

dx
Li2(x) =

d

dx

( ∞∑
n=1

xn

n2

)
=
∞∑
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d

dx

(
xn

n2

)
=

d
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d
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4
+

d
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x3

9
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+ · · ·+ d
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+ . . .
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x

2
+
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3
+
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4
+ · · ·+ xn−1

n
+ · · · =
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n

1



This is almost the same, except for the minus sign in front and a surplus power of x in
every term, which problems are easy to fix:

d

dx
Li2(x) =

∞∑
n=1

xn−1

n
=

1
x

∞∑
n=1

xn

n
=

1
x

(−ln(1− x)) = − 1
x

ln(1− x)

For those who dislike dividing by zero∗, this can be rearranged a little:

x
d

dx
Li2(x) = −ln(1− x)

There is also, of course, a corresponding integral formula . . . �

3. Denote the kth remainder term at 0 of the dilogarithm function by:

Rk,0(x) = Li2(x)−
k∑

n=1

xn

n2
= Li2(x)−

(
x+

x2

4
+
x3

9
+ · · ·+ xk

k2

)
Show that for any ε > 0 there is an K > 0 such that for any k ≥ K, |Rk,0(x)| < ε for
all x with −1 ≤ x ≤ 1. [4]

Solution. First, note that:

Rk,0(x) = Li2(x)−
k∑

n=1

xn

n2
=

∞∑
n=k+1

xn

n2
=

xk+1

(k + 1)2
+

xk+2

(k + 2)2
+ . . .

Second, reusing the observations from the solution to 1, when −1 ≤ x ≤ 1, we get:

|Rk,0(x)| =
∣∣∣∣ xk+1

(k + 1)2
+

xk+2

(k + 2)2
+ . . .

∣∣∣∣ ≤ ∣∣∣∣ xk+1

(k + 1)2

∣∣∣∣+
∣∣∣∣ xk+2

(k + 2)2

∣∣∣∣+ . . .

≤ 1
(k + 1)2

+
1

(k + 2)2
+ · · · =

∞∑
n=k+1

1
n2

Third, recall that
∞∑
n=1

1
n2 is a series of positive terms converging to π2

6 . If Sk =
k∑

n=1

1
n2 is

the kth partial sum, it follows that S1 < S2 < S3 < · · · < π2

6 and that lim
k→∞

Sk = π2

6 .

This means that given an ε > 0, there is a K > 0 such that for any k ≥ K,
∣∣∣Sk − π2

6

∣∣∣ =
π2

6 − Sk < ε. Finally, it now follows that:

|Rk,0(x)| ≤
∞∑

n=k+1

1
n2

=

( ∞∑
n=1

1
n2

)
−

(
k∑

n=1

1
n2

)
=
π2

6
− Sk < ε �

∗ Friends don’t let friends divide by zero!
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