Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2008
Solutions to Assignment \#4
Math Trek: Dilithium? No, dilogarithm!
The dilogarithm function, $\operatorname{Li}_{2}(x)$, is usually defined as the sum of an infinite series:

$$
\operatorname{Li}_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}=x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\frac{x^{4}}{16}+\ldots
$$

To answer the questions below you will probably want to review the basic information on convergence of series from your first-year calculus text, especially the (simplest forms of the) Comparison Test and the Integral Test.

1. Show that the series defining $\operatorname{Li}_{2}(x)$ converges for all x with $-1 \leq x \leq 1$. [3]

Solution. If $-1 \leq x \leq 1$, then $\left|\frac{x^{n}}{n^{2}}\right| \leq \frac{1}{n^{2}}$. Since the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is known to converge (to $\frac{\pi^{2}}{6}$; see Assignment \#1), it follows that $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$ converges absolutely (and hence converges) for $-1 \leq x \leq 1$.
2. How is the dilogarithm function related to the natural logarithm function? [3]

Solution. Recall that

$$
\ln (1-x)=-\sum_{n=1}^{\infty} \frac{x^{n}}{n}=-\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{4}+\ldots\right)
$$

which is a lot like the series defining $\operatorname{Li}_{2}(x)$,

$$
\mathrm{Li}_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}=x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\frac{x^{4}}{16}+\ldots,
$$

except for the minus sign in front and the fact that the denominators are n instead of n^{2}. We can make the the series for $\operatorname{Li}_{2}(x)$ look more like that for $\ln (1-x)$ by taking its derivative:

$$
\begin{aligned}
\frac{d}{d x} \operatorname{Li}_{2}(x) & =\frac{d}{d x}\left(\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}\right)=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{x^{n}}{n^{2}}\right) \\
& =\frac{d}{d x} x+\frac{d}{d x} \frac{x^{2}}{4}+\frac{d}{d x} \frac{x^{3}}{9}+\frac{d}{d x} \frac{x^{4}}{16}+\cdots+\frac{d}{d x} \frac{x^{n}}{n^{2}}+\ldots \\
& =1+\frac{x}{2}+\frac{x^{2}}{3}+\frac{x^{3}}{4}+\cdots+\frac{x^{n-1}}{n}+\cdots=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}
\end{aligned}
$$

This is almost the same, except for the minus sign in front and a surplus power of x in every term, which problems are easy to fix:

$$
\frac{d}{d x} \operatorname{Li}_{2}(x)=\sum_{n=1}^{\infty} \frac{x^{n-1}}{n}=\frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n}}{n}=\frac{1}{x}(-\ln (1-x))=-\frac{1}{x} \ln (1-x)
$$

For those who dislike dividing by zero*, this can be rearranged a little:

$$
x \frac{d}{d x} \operatorname{Li}_{2}(x)=-\ln (1-x)
$$

There is also, of course, a corresponding integral formula ...
3. Denote the k th remainder term at 0 of the dilogarithm function by:

$$
R_{k, 0}(x)=\operatorname{Li}_{2}(x)-\sum_{n=1}^{k} \frac{x^{n}}{n^{2}}=\operatorname{Li}_{2}(x)-\left(x+\frac{x^{2}}{4}+\frac{x^{3}}{9}+\cdots+\frac{x^{k}}{k^{2}}\right)
$$

Show that for any $\varepsilon>0$ there is an $K>0$ such that for any $k \geq K,\left|R_{k, 0}(x)\right|<\varepsilon$ for all x with $-1 \leq x \leq 1$. [4]
Solution. First, note that:

$$
R_{k, 0}(x)=\mathrm{Li}_{2}(x)-\sum_{n=1}^{k} \frac{x^{n}}{n^{2}}=\sum_{n=k+1}^{\infty} \frac{x^{n}}{n^{2}}=\frac{x^{k+1}}{(k+1)^{2}}+\frac{x^{k+2}}{(k+2)^{2}}+\ldots
$$

Second, reusing the observations from the solution to 1 , when $-1 \leq x \leq 1$, we get:

$$
\begin{aligned}
\left|R_{k, 0}(x)\right| & =\left|\frac{x^{k+1}}{(k+1)^{2}}+\frac{x^{k+2}}{(k+2)^{2}}+\ldots\right| \leq\left|\frac{x^{k+1}}{(k+1)^{2}}\right|+\left|\frac{x^{k+2}}{(k+2)^{2}}\right|+\ldots \\
& \leq \frac{1}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}+\cdots=\sum_{n=k+1}^{\infty} \frac{1}{n^{2}}
\end{aligned}
$$

Third, recall that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a series of positive terms converging to $\frac{\pi^{2}}{6}$. If $S_{k}=\sum_{n=1}^{k} \frac{1}{n^{2}}$ is the k th partial sum, it follows that $S_{1}<S_{2}<S_{3}<\cdots<\frac{\pi^{2}}{6}$ and that $\lim _{k \rightarrow \infty} S_{k}=\frac{\pi^{2}}{6}$. This means that given an $\varepsilon>0$, there is a $K>0$ such that for any $k \geq K,\left|S_{k}-\frac{\pi^{2}}{6}\right|=$ $\frac{\pi^{2}}{6}-S_{k}<\varepsilon$. Finally, it now follows that:

$$
\left|R_{k, 0}(x)\right| \leq \sum_{n=k+1}^{\infty} \frac{1}{n^{2}}=\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)-\left(\sum_{n=1}^{k} \frac{1}{n^{2}}\right)=\frac{\pi^{2}}{6}-S_{k}<\varepsilon
$$

[^0]
[^0]: * Friends don't let friends divide by zero!

