Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2008

Solutions to Assignment \#3

Eeeeeeeeeeeeeeeeee!

Recall that the Taylor series at 0 of e^{x} is $1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$. Let $R_{n, 0}(x)$ denote the nth remainder term at 0, i.e.

$$
\begin{aligned}
R_{n, 0}(x) & =e^{x}-\left(1+\frac{x}{1!}+\frac{x^{2}}{2!}+\cdots+\frac{x^{n}}{n!}\right) \\
& =e^{x}-1-\frac{x}{1!}-\frac{x^{2}}{2!}-\cdots-\frac{x^{n}}{n!}
\end{aligned}
$$

1. Use the integral form of the remainder for a Taylor series (see Assignment \#2) to show that for $x>0,0<R_{n, 0}(x) \leq \frac{e^{x} x^{n+1}}{(n+1)!}$. [2]

Solution. From Assignment $\# 2$ we know that for all $n \geq 0$,

$$
R_{n, a}(x)=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

In our case, $a=0$ and $f(t)=e^{t}$. Since $\frac{d}{d t} e^{t}=e^{t}$, it follows that $f^{(n+1)}(t)=e^{t}$ for all $n \geq 0$, which means that in this case we have, for $n \geq 0$,

$$
R_{n, 0}(x)=\int_{0}^{x} \frac{e^{t}}{n!}(x-t)^{n} d t
$$

Since $x>0$ and e^{t} is a continuous increasing function, we know that for all t with $0 \leq t \leq x$ we have that $e^{t} \leq e^{x}$. Hence

$$
\begin{aligned}
R_{n, 0}(x)=\int_{0}^{x} \frac{e^{t}}{n!}(x-t)^{n} d t & \leq \int_{0}^{x} \frac{e^{x}}{n!}(x-t)^{n} d t \\
& =\frac{e^{x}}{n!} \int_{0}^{x}(x-t)^{n} d t \\
& =\left.\frac{e^{x}}{n!}(-1) \frac{(x-t)^{n+1}}{n+1}\right|_{0} ^{x} \\
& =\frac{e^{x}}{n!}\left((-1) \frac{(x-x)^{n+1}}{n+1}-(-1) \frac{(x-0)^{n+1}}{n+1}\right) \\
& =\frac{e^{x}}{n!} \cdot \frac{x^{n+1}}{n+1} \\
& =\frac{e^{x} x^{n+1}}{(n+1)!}
\end{aligned}
$$

as desired.
2. Use your estimate for $R_{n, 0}(x)$ in $\mathbf{1}$ to show that $0<R_{n, 0}(1)<\frac{3}{(n+1)!}$. [1]

Solution. From the estimate in 1, with $x=1$:

$$
0<R_{n, 0}(1) \leq \frac{e^{1} 1^{n+1}}{(n+1)!}=\frac{e}{(n+1)!}
$$

Since $e=2.71 \cdots<3$, it follows that

$$
0<R_{n, 0}(1) \leq \frac{e}{(n+1)!}<\frac{3}{(n+1)!}
$$

as desired.
3. Show that e is irrational. [7]

Hint: Assume by way of contradiction that $e=\frac{a}{b}$, where a and b are positive integers. Choose an n such that $n>3$ and $n>b$, and use the fact that

$$
\frac{a}{b}=e=e^{1}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+R_{n, 0}(1)
$$

to show that $n!R_{n, 0}(1)$ must be an integer. Then use $\mathbf{2}$ to show that it cannot be an integer.

Solution. Following the hint, assume by way of contradiction that e is rational, i.e. $e=\frac{a}{b}$, where a and b are positive integers.

Let n be an integer such that $n>3$ and $n>b$. By the definition of $R_{n, 0}(1)$ we have that:

$$
\frac{a}{b}=e=e^{1}=1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+R_{n, 0}(1)
$$

Multiplying through by n ! gives us:

$$
\frac{n!a}{b}=n!+\frac{n!}{1!}+\frac{n!}{2!}+\frac{n!}{3!}+\cdots+\frac{n!}{n!}+n!R_{n, 0}(1)
$$

Since $n>b, b$ is a factor of $n!$, and so $\frac{n!a}{b}$ must be an integer. It is easy to see from the definition of the factorial function that each of $n!, \frac{n!}{1!}, \frac{n!}{2!}, \frac{n!}{3!}, \ldots, \frac{n!}{n!}$, must be an integer too. It follows that

$$
n!R_{n, 0}(1)=\frac{n!a}{b}-\left(n!+\frac{n!}{1!}+\frac{n!}{2!}+\frac{n!}{3!}+\cdots+\frac{n!}{n!}\right)
$$

must be an integer too.
On the other hand, we know from 2 that $0<R_{n, 0}(1)<\frac{3}{(n+1)!}$, so $0<n!R_{n, 0}(1)<$ $\frac{3 \cdot n!}{(n+1)!}=\frac{3}{n+1}$. Since $n>3$, it is easy to see that $\frac{3}{n+1}<\frac{3}{4}<1$. It follows that $0<$ $n!R_{n, 0}(1)<1$, which contradicts the fact that $n!R_{n, 0}(1)$ must be an integer.

Hence, by contradiction, e must be irrational.

