Mathematics 3790H — Analysis I: Introduction to analysis
TRENT UNIVERSITY, Fall 2008

Solutions to Assignment #2
The integral form of the remainder of a Taylor series

In what follows, let us suppose that a is a real number and f(x) is a function such
that f(")(z) is defined and continuous for all n > 0 and all values of  we may encounter.
Recall that for n > 0, the Taylor polynomial of degree n of f(x) at a is
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and that the corresponding remainder term is

1. Use the Fundamental Theorem of Calculus to show that
Roa / ryde. 1]
Solution.

/ f @) dt = f(z) — f(a) (By the Fundamental Theorem of Calculus.)

= f(x) — To,a(z) (By the definition of Ty 4(x).)
= Ro,q(7) (By the definition of Ry ,(x).) B

2. Use the formula in 1 and integration by parts to show that
Ry o(z / ) (x—t)dt. [2]
Hint: Use the parts u = f'(t) and v =t —x ...

Solution. We start with the integral in 1 and apply parts with u = f/(t) and v =t — z,
so du = f"(t) and dv = dt.
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It follows that

/ ") — 1) di = / " F () dt - fa)( - a)
— Rou(e)— f'(a)(z —a)  (By1)
= f(z) — f(a) — f'(a)( - a)
— f(z) — Tha(a)
== Rl,a(x)a

as desired. l
3. Use the formula in 2 and integration by parts to show that
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Solution. We start with the integral in 2 and apply parts with u = f”(¢) and v = %(t—x)g,

so du = f®)(t) and dv = (t — x)dt.
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as desired. H



4. Find an integral formula for R,, , and use induction to show that it works. [5]

Solution. We will use induction on n to show that
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for n > 0.
Base Step. (n = 0) This is just 1. (Note that 0! =1 and (z —¢)? = 1.)

Inductive Hypothesis. (n = k)
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Inductive Step. (n = k — n = k + 1) We assume the inductive hypothesis and apply
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It follows that
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(By the inductive hypothesis.)
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= f(2) = Tht1,a()
= RkJrl,a(x)v

as desired. Whew! B



