Mathematics $\mathbf{3 7 9 0 H}$ - Analysis I: Introduction to analysis

Trent University, Fall 2008
Solutions to Assignment \#2
The integral form of the remainder of a Taylor series
In what follows, let us suppose that a is a real number and $f(x)$ is a function such that $f^{(n)}(x)$ is defined and continuous for all $n \geq 0$ and all values of x we may encounter. Recall that for $n \geq 0$, the Taylor polynomial of degree n of $f(x)$ at a is

$$
\begin{aligned}
T_{n, a}(x) & =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} \\
& =f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}
\end{aligned}
$$

and that the corresponding remainder term is

$$
R_{n, a}(x)=f(x)-T_{n, a}(x) .
$$

1. Use the Fundamental Theorem of Calculus to show that

$$
R_{0, a}(x)=\int_{a}^{x} f^{\prime}(t) d t
$$

Solution.

$$
\begin{aligned}
\int_{a}^{x} f^{\prime}(t) d t & =f(x)-f(a) \quad \text { (By the Fundamental Theorem of Calculus.) } \\
& =f(x)-T_{0, a}(x) \quad\left(\text { By the definition of } T_{0, a}(x) .\right) \\
& \left.=R_{0, a}(x) \quad \text { (By the definition of } R_{0, a}(x) .\right)
\end{aligned}
$$

2. Use the formula in $\mathbf{1}$ and integration by parts to show that

$$
R_{1, a}(x)=\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
$$

Hint: Use the parts $u=f^{\prime}(t)$ and $v=t-x \ldots$
Solution. We start with the integral in 1 and apply parts with $u=f^{\prime}(t)$ and $v=t-x$, so $d u=f^{\prime \prime}(t)$ and $d v=d t$.

$$
\begin{aligned}
\int_{a}^{x} f^{\prime}(t) d t & =\left.f^{\prime}(t)(t-x)\right|_{a} ^{x}-\int_{a}^{x} f^{\prime \prime}(t)(t-x) d t \\
& =f^{\prime}(x)(x-x)-f^{\prime}(a)(a-x)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t \\
& =f^{\prime}(a)(x-a)+\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t
\end{aligned}
$$

It follows that

$$
\begin{align*}
\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t & =\int_{a}^{x} f^{\prime}(t) d t-f^{\prime}(a)(x-a) \\
& =R_{0, a}(x)-f^{\prime}(a)(x-a) \tag{By1.}\\
& =f(x)-f(a)-f^{\prime}(a)(x-a) \\
& =f(x)-T_{1, a}(x) \\
& =R_{1, a}(x)
\end{align*}
$$

as desired.
3. Use the formula in 2 and integration by parts to show that

$$
R_{2, a}(x)=\int_{a}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t
$$

Solution. We start with the integral in 2 and apply parts with $u=f^{\prime \prime}(t)$ and $v=\frac{1}{2}(t-x)^{2}$, so $d u=f^{(3)}(t)$ and $d v=(t-x) d t$.

$$
\begin{aligned}
\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t & =-\int_{a}^{x} f^{\prime \prime}(t)(t-x) d t \\
& =-\left(\left.\frac{f^{\prime \prime}(t)}{2}(t-x)^{2}\right|_{a} ^{x}-\int_{a}^{x} \frac{f^{(3)}(t)}{2}(t-x)^{2} d t\right) \\
& =-\left(\frac{f^{\prime \prime}(x)}{2}(x-x)^{2}-\frac{f^{\prime \prime}(a)}{2}(a-x)^{2}-\int_{a}^{x} \frac{f^{(3)}(t)}{2}(t-x)^{2} d t\right) \\
& =\frac{f^{\prime \prime}(a)}{2}(a-x)^{2}+\int_{a}^{x} \frac{f^{(3)}(t)}{2}(t-x)^{2} d t \\
& =\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\int_{a}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{a}^{x} \frac{f^{(3)}(t)}{2}(x-t)^{2} d t & =\int_{a}^{x} f^{\prime \prime}(t)(x-t) d t-\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\
& =R_{1, a}(x)-\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \quad(\text { By 2. }) \\
& =f(x)-f(a)-f^{\prime}(a)(x-a)-\frac{f^{\prime \prime}(a)}{2}(x-a)^{2} \\
& =f(x)-T_{2, a}(x) \\
& =R_{2, a}(x)
\end{aligned}
$$

as desired.
4. Find an integral formula for $R_{n, a}$ and use induction to show that it works. [5]

Solution. We will use induction on n to show that

$$
R_{n, a}(x)=\int_{a}^{x} \frac{f^{(n+1)}(t)}{n!}(x-t)^{n} d t
$$

for $n \geq 0$.
Base Step. $(n=0)$ This is just 1. (Note that $0!=1$ and $(x-t)^{0}=1$.)
Inductive Hypothesis. $(n=k)$

$$
R_{k, a}(x)=\int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t
$$

Inductive Step. ($n=k \rightarrow n=k+1$) We assume the inductive hypothesis and apply integration by parts to the integral, with $u=f^{(k+1)}(t)$ and $v=\frac{1}{(k+1)!}(t-x)^{k+1}$, so $d u=f^{(k+2)}(t) d t$ and $d v=\frac{1}{(k+1)!}(k+1)(t-x)^{k} d t=\frac{1}{k!}(t-x)^{k} d t$.

$$
\begin{aligned}
& \int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t=(-1)^{k} \int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(t-x)^{k} d t \\
&=(-1)^{k}\left(\left.\frac{f^{(k+1)}(t)}{(k+1)!}(t-x)^{k+1}\right|_{a} ^{x}-\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(t-x)^{k+1} d t\right) \\
&=(-1)^{k}\left(\frac{f^{(k+1)}(x)}{(k+1)!}(x-x)^{k+1}-\frac{f^{(k+1)}(a)}{(k+1)!}(a-x)^{k+1}\right. \\
&\left.\quad-\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(t-x)^{k+1} d t\right) \\
&=(-1)^{k}\left(-\frac{f^{(k+1)}(a)}{(k+1)!}(a-x)^{k+1}-\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(t-x)^{k+1} d t\right) \\
&=(-1)^{k+1} \frac{f^{(k+1)}(a)}{(k+1)!}(a-x)^{k+1} \\
& \quad+(-1)^{k+1} \int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(t-x)^{k+1} d t \\
&=\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}+\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\int_{a}^{x} \frac{f^{(k+2)}(t)}{(k+1)!}(x-t)^{k+1} d t & =\int_{a}^{x} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k} d t-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} \\
& =R_{k, a}(x)-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1}
\end{aligned}
$$

(By the inductive hypothesis.)

$$
\begin{aligned}
& =f(x)-f(a)-f^{\prime}(a)(x-a)-\cdots-\frac{f^{(k)}(a)}{(k)!}(x-a)^{k} \\
& \quad-\frac{f^{(k+1)}(a)}{(k+1)!}(x-a)^{k+1} \\
& =f(x)-T_{k+1, a}(x) \\
& =R_{k+1, a}(x),
\end{aligned}
$$

as desired. Whew!

